scholarly journals Metabolic Feedback Inhibition Influences Metabolite Secretion by the Human Gut Symbiont Bacteroides thetaiotaomicron

mSystems ◽  
2020 ◽  
Vol 5 (5) ◽  
Author(s):  
Jennie L. Catlett ◽  
Jonathan Catazaro ◽  
Mikaela Cashman ◽  
Sean Carr ◽  
Robert Powers ◽  
...  

Bacteroides is a highly abundant taxon in the human gut, and Bacteroides thetaiotaomicron (B. theta) is a ubiquitous human symbiont that colonizes the host early in development and persists throughout its life span. The phenotypic plasticity of keystone organisms such as B. theta is important to understand in order to predict phenotype(s) and metabolic interactions under changing nutrient conditions such as those that occur in complex gut communities. Our study shows B. theta prioritizes energy conservation and suppresses secretion of “overflow metabolites” such as organic acids and amino acids when concentrations of acetate are high. Secreted metabolites, especially amino acids, can be a source of nutrients or signals for the host or other microbes in the community. Our study suggests that when metabolically stressed by acetate, B. theta stops sharing with its ecological partners.

2018 ◽  
Vol 85 (10) ◽  
Author(s):  
Alli Lynch ◽  
Seshu R. Tammireddy ◽  
Mary K. Doherty ◽  
Phillip D. Whitfield ◽  
David J. Clarke

ABSTRACTAcylated amino acids function as important components of the cellular membrane in some bacteria. Biosynthesis is initiated by theN-acylation of the amino acid, and this is followed by subsequentO-acylation of the acylated molecule, resulting in the production of the mature diacylated amino acid lipid. In this study, we use both genetics and liquid chromatography-mass spectrometry (LC-MS) to characterize the biosynthesis and function of a diacylated glycine lipid (GL) species produced inBacteroides thetaiotaomicron. We, and others, have previously reported the identification of a gene, namedglsBin this study, that encodes anN-acyltransferase activity responsible for the production of a monoacylated glycine calledN-acyl-3-hydroxy-palmitoyl glycine (or commendamide). In all of theBacteroidalesgenomes sequenced so far, theglsBgene is located immediately downstream from a gene, namedglsA, that is also predicted to encode a protein with acyltransferase activity. We use LC-MS to show that the coexpression ofglsBandglsAresults in the production of GL inEscherichia coli. We constructed a deletion mutant of theglsBgene inB. thetaiotaomicron, and we confirm thatglsBis required for the production of GL inB. thetaiotaomicron. Moreover, we show thatglsBis important for the ability ofB. thetaiotaomicronto adapt to stress and colonize the mammalian gut. Therefore, this report describes the genetic requirements for the biosynthesis of GL, a diacylated amino acid species that contributes to fitness in the human gut bacteriumB. thetaiotaomicron.IMPORTANCEThe gut microbiome has an important role in both health and disease of the host. The mammalian gut microbiome is often dominated by bacteria from theBacteroidales, an order that includesBacteroidesandPrevotella. In this study, we have identified an acylated amino acid, called glycine lipid, produced byBacteroides thetaiotaomicron, a beneficial bacterium originally isolated from the human gut. In addition to identifying the genes required for the production of glycine lipids, we show that glycine lipids have an important role during the adaptation ofB. thetaiotaomicronto a number of environmental stresses, including exposure to either bile or air. We also show that glycine lipids are important for the normal colonization of the murine gut byB. thetaiotaomicron. This work identifies glycine lipids as an important fitness determinant inB. thetaiotaomicronand therefore increases our understanding of the molecular mechanisms underpinning colonization of the mammalian gut by beneficial bacteria.


2015 ◽  
Vol 81 (12) ◽  
pp. 3973-3983 ◽  
Author(s):  
Alicia Lammerts van Bueren ◽  
Aakanksha Saraf ◽  
Eric C. Martens ◽  
Lubbert Dijkhuizen

ABSTRACTProbiotic microorganisms are ingested as food or supplements and impart positive health benefits to consumers. Previous studies have indicated that probiotics transiently reside in the gastrointestinal tract and, in addition to modulating commensal species diversity, increase the expression of genes for carbohydrate metabolism in resident commensal bacterial species. In this study, it is demonstrated that the human gut commensal speciesBacteroides thetaiotaomicronefficiently metabolizes fructan exopolysaccharide (EPS) synthesized by probioticLactobacillus reuteristrain 121 while only partially degrading reuteran and isomalto/malto-polysaccharide (IMMP) α-glucan EPS polymers.B. thetaiotaomicronmetabolized these EPS molecules via the activation of enzymes and transport systems encoded by dedicated polysaccharide utilization loci specific for β-fructans and α-glucans. Reduced metabolism of reuteran and IMMP α-glucan EPS molecules may be due to reduced substrate binding by components of the starch utilization system (sus). This study reveals that microbial EPS substrates activate genes for carbohydrate metabolism inB. thetaiotaomicronand suggests that microbially derived carbohydrates provide a carbohydrate-rich reservoir forB. thetaiotaomicronnutrient acquisition in the gastrointestinal tract.


mBio ◽  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Albane Ruaud ◽  
Sofia Esquivel-Elizondo ◽  
Jacobo de la Cuesta-Zuluaga ◽  
Jillian L. Waters ◽  
Largus T. Angenent ◽  
...  

ABSTRACT Across human populations, 16S rRNA gene-based surveys of gut microbiomes have revealed that the bacterial family Christensenellaceae and the archaeal family Methanobacteriaceae cooccur and are enriched in individuals with a lean, compared to an obese, body mass index (BMI). Whether these association patterns reflect interactions between metabolic partners, as well as whether these associations play a role in the lean host phenotype with which they associate, remains to be ascertained. Here, we validated previously reported cooccurrence patterns of the two families and their association with a lean BMI with a meta-analysis of 1,821 metagenomes derived from 10 independent studies. Furthermore, we report positive associations at the genus and species levels between Christensenella spp. and Methanobrevibacter smithii, the most abundant methanogen of the human gut. By coculturing three Christensenella spp. with M. smithii, we show that Christensenella spp. efficiently support the metabolism of M. smithii via H2 production far better than Bacteroides thetaiotaomicron does. Christensenella minuta forms flocs colonized by M. smithii even when H2 is in excess. In culture with C. minuta, H2 consumption by M. smithii shifts the metabolic output of C. minuta’s fermentation toward acetate rather than butyrate. Together, these results indicate that the widespread cooccurrence of these microorganisms is underpinned by both physical and metabolic interactions. Their combined metabolic activity may provide insights into their association with a lean host BMI. IMPORTANCE The human gut microbiome is made of trillions of microbial cells, most of which are Bacteria, with a subset of Archaea. The bacterial family Christensenellaceae and the archaeal family Methanobacteriaceae are widespread in human guts. They correlate with each other and with a lean body type. Whether species of these two families interact and how they affect the body type are unanswered questions. Here, we show that species within these families correlate with each other across people. We also demonstrate that particular species of these two families grow together in dense flocs, wherein the bacteria provide hydrogen gas to the archaea, which then make methane. When the archaea are present, the ratio of bacterial products (which are nutrients for humans) is changed. These observations indicate that when these species grow together, their products have the potential to affect the physiology of their human host.


2019 ◽  
Vol 201 (18) ◽  
Author(s):  
Jovana Mihajlovic ◽  
Nathalie Bechon ◽  
Christa Ivanova ◽  
Florian Chain ◽  
Alexandre Almeida ◽  
...  

ABSTRACTBacteroides thetaiotaomicronis a prominent anaerobic member of the healthy human gut microbiota. While the majority of functional studies onB. thetaiotaomicronaddressed its impact on the immune system and the utilization of diet polysaccharides,B. thetaiotaomicronbiofilm capacity and its contribution to intestinal colonization are still poorly characterized. We tested the natural adhesion of 34B. thetaiotaomicronisolates and showed that although biofilm capacity is widespread amongB. thetaiotaomicronstrains, this phenotype is masked or repressed in the widely used reference strain VPI 5482. Using transposon mutagenesis followed by a biofilm positive-selection procedure, we identified VPI 5482 mutants with increased biofilm capacity corresponding to an alteration in the C-terminal region of BT3147, encoded by theBT3148-BT3147locus, which displays homology with Mfa-like type V pili found in manyBacteroidetes. We show that BT3147 is exposed on theB. thetaiotaomicronsurface and that BT3147-dependent adhesion also requires BT3148, suggesting that BT3148 and BT3147 correspond to the anchor and stalk subunits of a new type V pilus involved inB. thetaiotaomicronadhesion. This study therefore introducesB. thetaiotaomicronas a model to study proteinaceous adhesins and biofilm-related phenotypes in this important intestinal symbiont.IMPORTANCEAlthough the gut anaerobeBacteroides thetaiotaomicronis a prominent member of the healthy human gut microbiota, little is known about its capacity to adhere to surfaces and form biofilms. Here, we identify that alteration of a surface-exposed protein corresponding to a type of pili found in manyBacteroidetesincreasesB. thetaiotaomicronbiofilm formation. This study lays the ground for establishing this bacterium as a model organism forin vitroandin vivostudies of biofilm-related phenotypes in gut anaerobes.


mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Rajdeep Banerjee ◽  
Erin Weisenhorn ◽  
Kevin J. Schwartz ◽  
Kevin S. Myers ◽  
Jeremy D. Glasner ◽  
...  

ABSTRACT Pathogenicity islands and plasmids bear genes for pathogenesis of various Escherichia coli pathotypes. Although there is a basic understanding of the contribution of these virulence factors to disease, less is known about variation in regulatory networks in determining disease phenotypes. Here, we dissected a regulatory network directed by the conserved iron homeostasis regulator, ferric uptake regulator (Fur), in uropathogenic E. coli (UPEC) strain CFT073. Comparing anaerobic genome-scale Fur DNA binding with Fur-dependent transcript expression and protein levels of the uropathogen to that of commensal E. coli K-12 strain MG1655 showed that the Fur regulon of the core genome is conserved but also includes genes within the pathogenicity/genetic islands. Unexpectedly, regulons indicative of amino acid limitation and the general stress response were also indirectly activated in the uropathogen fur mutant, suggesting that induction of the Fur regulon increases amino acid demand. Using RpoS levels as a proxy, addition of amino acids mitigated the stress. In addition, iron chelation increased RpoS to the same levels as in the fur mutant. The increased amino acid demand of the fur mutant or iron chelated cells was exacerbated by aerobic conditions, which could be partly explained by the O2-dependent synthesis of the siderophore aerobactin, encoded by an operon within a pathogenicity island. Taken together, these data suggest that in the iron-poor environment of the urinary tract, amino acid availability could play a role in the proliferation of this uropathogen, particularly if there is sufficient O2 to produce aerobactin. IMPORTANCE Host iron restriction is a common mechanism for limiting the growth of pathogens. We compared the regulatory network controlled by Fur in uropathogenic E. coli (UPEC) to that of nonpathogenic E. coli K-12 to uncover strategies that pathogenic bacteria use to overcome iron limitation. Although iron homeostasis functions were regulated by Fur in the uropathogen as expected, a surprising finding was the activation of the stringent and general stress responses in the uropathogen fur mutant, which was rescued by amino acid addition. This coordinated global response could be important in controlling growth and survival under nutrient-limiting conditions and during transitions from the nutrient-rich environment of the lower gastrointestinal (GI) tract to the more restrictive environment of the urinary tract. The coupling of the response of iron limitation to increased demand for amino acids could be a critical attribute that sets UPEC apart from other E. coli pathotypes.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 248
Author(s):  
Chang Ha Park ◽  
Hyeon Ji Yeo ◽  
Ye Jin Kim ◽  
Bao Van Nguyen ◽  
Ye Eun Park ◽  
...  

This study aimed to elucidate the variations in primary and secondary metabolites during Lycorisradiata flower development using high performance liquid chromatography (HPLC) and gas chromatography time-of-flight mass spectrometry (GC-TOFMS). The result showed that seven carotenoids, seven phenolic acids, three anthocyanins, and galantamine were identified in the L. radiata flowers. Most secondary metabolite levels gradually decreased according to the flower developmental stages. A total of 51 metabolites, including amines, sugars, sugar intermediates, sugar alcohols, amino acids, organic acids, phenolic acids, and tricarboxylic acid (TCA) cycle intermediates, were identified and quantified using GC-TOFMS. Among the hydrophilic compounds, most amino acids increased during flower development; in contrast, TCA cycle intermediates and sugars decreased. In particular, glutamine, asparagine, glutamic acid, and aspartic acid, which represent the main inter- and intracellular nitrogen carriers, were positively correlated with the other amino acids and were negatively correlated with the TCA cycle intermediates. Furthermore, quantitation data of the 51 hydrophilic compounds were subjected to partial least-squares discriminant analyses (PLS-DA) to assess significant differences in the metabolites of L. radiata flowers from stages 1 to 4. Therefore, this study will serve as the foundation for a biochemical approach to understand both primary and secondary metabolism in L. radiata flower development.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1377
Author(s):  
Song-Hui Soung ◽  
Sunmin Lee ◽  
Seung-Hwa Lee ◽  
Hae-Jin Kim ◽  
Na-Rae Lee ◽  
...  

Numerous varieties of doenjang are manufactured by many food companies using different ingredients and fermentation processes, and thus, the qualities such as taste and flavor are very different. Therefore, in this study, we compared many products, specifically, 19 traditional doenjang (TD) and 17 industrial doenjang (ID). Subsequently, we performed non-targeted metabolite profiling, and multivariate statistical analysis to discover distinct metabolites in two types of doenjang. Amino acids, organic acids, isoflavone aglycones, non-DDMP (2,3-dihydro-2,5-dihydroxy-6-methyl-4H-pyran-4- one) soyasaponins, hydroxyisoflavones, and biogenic amines were relatively abundant in TD. On the contrary, contents of dipeptides, lysophospholipids, isoflavone glucosides and DDMP-conjugated soyasaponin, precursors of the above-mentioned metabolites, were comparatively higher in ID. We also observed relatively higher antioxidant, protease, and β-glucosidase activities in TD. Our results may provide valuable information on doenjang to consumers and manufacturers, which can be used while selecting and developing new products.


1988 ◽  
Vol 15 (4) ◽  
pp. 557 ◽  
Author(s):  
MJ Canny ◽  
ME Mccully

Three methods of sampling xylem sap of maize roots were compared: sap bleeding from the stem cut just above the ground; sap bleeding from the cut tops of roots still undisturbed in the ground; and sap aspirated from excavated roots under reduced pressure. The bleeding saps were often unobtainable. When their composition was measured with time from cutting, the concentrations of the major solutes approximately doubled in 2 h. Aspirated sap was chosen as the most reliable sample of root xylem contents. Solute concentrations of the saps showed great variability between individual roots for all solutes, but on average the concentrations found (in �mol g-1 sap) were: total amino acids, 1.8; nitrate, 1.8; sugars (mainly sucrose), 5.4; total organic acids, 18.3. Individual amino acids also varied greatly between roots. Glutamine, aspartic acid and serine were generally most abundant. The principal organic acid found was malic, approximately 8 �mol g-1. From these analyses the ratios of carbon in the fractions (sugars : amino acids : organic acids) = (44 : 6 : 50). 14Carbon pulse fed to a leaf appeared in the root sap within 30 min, rose to a peak at 4-6 h, and declined slowly over a week. During all this time the neutral, cation and anion fractions were sensibly constant in the proportions 86 : 10 : 4. The 14C therefore did not move towards the equilibrium of 12C-compounds in the sap. It is argued that the results do not support a hypothesis of formation of amino carbon from recent assimilate and reduced nitrate in the roots and an export of this to the shoot in the transpiration stream.


2019 ◽  
Vol 201 (19) ◽  
Author(s):  
Surashree S. Kulkarni ◽  
Joseph J. Johnston ◽  
Yongtao Zhu ◽  
Zachary T. Hying ◽  
Mark J. McBride

ABSTRACTFlavobacterium johnsoniaeSprB moves rapidly along the cell surface, resulting in gliding motility. SprB secretion requires the type IX secretion system (T9SS). Proteins secreted by the T9SS typically have conserved C-terminal domains (CTDs) belonging to the type A CTD or type B CTD family. Attachment of 70- to 100-amino-acid type A CTDs to a foreign protein allows its secretion. Type B CTDs are common but have received little attention. Secretion of the foreign protein superfolder green fluorescent protein (sfGFP) fused to regions spanning the SprB type B CTD (sfGFP-CTDSprB) was analyzed. CTDs of 218 amino acids or longer resulted in secretion of sfGFP, whereas a 149-amino-acid region did not. Some sfGFP was secreted in soluble form, whereas the rest was attached on the cell surface. Surface-attached sfGFP was rapidly propelled along the cell, suggesting productive interaction with the motility machinery. This did not result in rapid cell movement, which apparently requires additional regions of SprB. Secretion of sfGFP-CTDSprBrequired coexpression withsprF, which lies downstream ofsprB. SprF is similar in sequence toPorphyromonas gingivalisPorP. MostF. johnsoniaegenes encoding proteins with type B CTDs lie immediately upstream ofporP/sprF-like genes. sfGFP was fused to the type B CTD from one such protein (Fjoh_3952). This resulted in secretion of sfGFP only when it was coexpressed with its cognate PorP/SprF-like protein. These results highlight the need for extended regions of type B CTDs and for coexpression with the appropriate PorP/SprF-like protein for efficient secretion and cell surface localization of cargo proteins.IMPORTANCETheF. johnsoniaegliding motility adhesin SprB is delivered to the cell surface by the type IX secretion system (T9SS) and is rapidly propelled along the cell by the motility machinery. How this 6,497-amino-acid protein interacts with the secretion and motility machines is not known. Fusion of the C-terminal 218 amino acids of SprB to a foreign cargo protein resulted in its secretion, attachment to the cell surface, and rapid movement by the motility machinery. Efficient secretion of SprB required coexpression with the outer membrane protein SprF. Secreted proteins that have sequence similarity to SprB in their C-terminal regions are common in the phylumBacteroidetesand may have roles in adhesion, motility, and virulence.


Sign in / Sign up

Export Citation Format

Share Document