scholarly journals Weaning Age and Its Effect on the Development of the Swine Gut Microbiome and Resistome

mSystems ◽  
2021 ◽  
Author(s):  
Devin B. Holman ◽  
Katherine E. Gzyl ◽  
Kathy T. Mou ◽  
Heather K. Allen

Piglets are abruptly separated from their sow at weaning and are quickly transitioned from sow’s milk to a plant-based diet. This is the most important period in commercial swine production, yet the effect of weaning age on the long-term development of the pig gut microbiome is largely unknown.

2021 ◽  
Author(s):  
Devin B Holman ◽  
Katherine E Gzyl ◽  
Kathy T Mou ◽  
Heather K Allen

Piglets are often weaned between 19 and 22 d of age in North America although in some swine operations this may occur at 14 d or less. Piglets are abruptly separated from their sow at weaning and are quickly transitioned from sow's milk to a plant-based diet. The effect of weaning age on the long-term development of the pig gut microbiome is largely unknown. In this study, pigs were weaned at either 14, 21, or 28 d of age and fecal samples collected 21 times from d 4 (neonatal) through to marketing at d 140. The fecal microbiome was characterized using 16S rRNA gene and shotgun metagenomic sequencing. The fecal microbiome of all piglets shifted significantly three to seven days post-weaning with an increase in microbial diversity. Several Prevotella spp. increased in relative abundance immediately after weaning as did butyrate-producing species such as Butyricicoccus porcorum, Faecalibacterium prausnitzii, and Megasphaera elsdenii. Within 7 days of weaning, the gut microbiome of pigs weaned at 21 and 28 days of age resembled that of pigs weaned at 14 d. Resistance genes to most antimicrobial classes decreased in relative abundance post-weaning with the exception of those conferring resistance to tetracyclines and macrolides-lincosamides-streptogramin B. The relative abundance of microbial carbohydrate-active enzymes (CAZymes) changed significantly in the post-weaning period with an enrichment of CAZymes involved in degradation of plant-derived polysaccharides. These results demonstrate that pigs tend to have a more similar microbiome as they age and that weaning age has only a temporary effect on the gut microbiome.


Life ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 246
Author(s):  
Felix C.F. Schmitt ◽  
Martin Schneider ◽  
William Mathejczyk ◽  
Markus A. Weigand ◽  
Jane C. Figueiredo ◽  
...  

Changes in the gut microbiome have already been associated with postoperative complications in major abdominal surgery. However, it is still unclear whether these changes are transient or a long-lasting effect. Therefore, the aim of this prospective clinical pilot study was to examine long-term changes in the gut microbiota and to correlate these changes with the clinical course of the patient. Methods: In total, stool samples of 62 newly diagnosed colorectal cancer patients undergoing primary tumor resection were analyzed by 16S-rDNA next-generation sequencing. Stool samples were collected preoperatively in order to determine the gut microbiome at baseline as well as at 6, 12, and 24 months thereafter to observe longitudinal changes. Postoperatively, the study patients were separated into two groups—patients who suffered from postoperative complications (n = 30) and those without complication (n = 32). Patients with postoperative complications showed a significantly stronger reduction in the alpha diversity starting 6 months after operation, which does not resolve, even after 24 months. The structure of the microbiome was also significantly altered from baseline at six-month follow-up in patients with complications (p = 0.006). This was associated with a long-lasting decrease of a large number of species in the gut microbiota indicating an impact in the commensal microbiota and a long-lasting increase of Fusobacterium ulcerans. The microbial composition of the gut microbiome shows significant changes in patients with postoperative complications up to 24 months after surgery.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Aaro Salosensaari ◽  
Ville Laitinen ◽  
Aki S. Havulinna ◽  
Guillaume Meric ◽  
Susan Cheng ◽  
...  

AbstractThe collection of fecal material and developments in sequencing technologies have enabled standardised and non-invasive gut microbiome profiling. Microbiome composition from several large cohorts have been cross-sectionally linked to various lifestyle factors and diseases. In spite of these advances, prospective associations between microbiome composition and health have remained uncharacterised due to the lack of sufficiently large and representative population cohorts with comprehensive follow-up data. Here, we analyse the long-term association between gut microbiome variation and mortality in a well-phenotyped and representative population cohort from Finland (n = 7211). We report robust taxonomic and functional microbiome signatures related to the Enterobacteriaceae family that are associated with mortality risk during a 15-year follow-up. Our results extend previous cross-sectional studies, and help to establish the basis for examining long-term associations between human gut microbiome composition, incident outcomes, and general health status.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Travis T. Sims ◽  
Molly B. El Alam ◽  
Tatiana V. Karpinets ◽  
Stephanie Dorta-Estremera ◽  
Venkatesh L. Hegde ◽  
...  

AbstractDiversity of the gut microbiome is associated with higher response rates for cancer patients receiving immunotherapy but has not been investigated in patients receiving radiation therapy. Additionally, current studies investigating the gut microbiome and outcomes in cancer patients may not have adjusted for established risk factors. Here, we sought to determine if diversity and composition of the gut microbiome was independently associated with survival in cervical cancer patients receiving chemoradiation. Our study demonstrates that the diversity of gut microbiota is associated with a favorable response to chemoradiation. Additionally, compositional variation among patients correlated with short term and long-term survival. Short term survivor fecal samples were significantly enriched in Porphyromonas, Porphyromonadaceae, and Dialister, whereas long term survivor samples were significantly enriched in Escherichia Shigella, Enterobacteriaceae, and Enterobacteriales. Moreover, analysis of immune cells from cervical tumor brush samples by flow cytometry revealed that patients with a high microbiome diversity had increased tumor infiltration of CD4+ lymphocytes as well as activated subsets of CD4 cells expressing ki67+ and CD69+ over the course of radiation therapy. Modulation of the gut microbiota before chemoradiation might provide an alternative way to enhance treatment efficacy and improve treatment outcomes in cervical cancer patients.


2021 ◽  
Vol 5 (4) ◽  
Author(s):  
Danxia Yu ◽  
Yaohua Yang ◽  
Jirong Long ◽  
Wanghong Xu ◽  
Qiuyin Cai ◽  
...  

ABSTRACT Background Diet is known to affect human gut microbiome composition; yet, how diet affects gut microbiome functionality remains unclear. Objective We compared the diversity and abundance/presence of fecal microbiome metabolic pathways among individuals according to their long-term diet quality. Methods In 2 longitudinal cohorts, we assessed participants’ usual diets via repeated surveys during 1996–2011 and collected a stool sample in 2015–2018. Participants who maintained a healthy or unhealthy diet (i.e., stayed in the highest or lowest quintile of a healthy diet score throughout follow-up) were selected. Participants were excluded if they reported a history of cancer, cardiovascular disease, diabetes, or hypertension; had diarrhea or constipation in the last 7 d; or used antibiotics in the last 6 mo before stool collection. Functional profiling of shotgun metagenomics was performed using HUMAnN2. Associations of dietary variables and 420 microbial metabolic pathways were evaluated via multivariable-adjusted linear or logistic regression models. Results We included 144 adults (mean age = 64 y; 55% female); 66 had an unhealthy diet and 78 maintained a healthy diet. The healthy diet group had higher Shannon α-diversity indexes of microbial gene families and metabolic pathways (both P < 0.02), whereas β-diversity, as evaluated by Bray-Curtis distance, did not differ between groups (both P > 0.50). At P < 0.01 [false discovery rate (FDR) <0.15], the healthy diet group showed enriched pathways for vitamin and carrier biosynthesis (e.g., tetrahydrofolate, acetyl-CoA, and l-methionine) and tricarboxylic acid (TCA) cycle, and increased degradation (or reduced biosynthesis) of certain sugars [e.g., cytidine monophosphate (CMP)-legionaminate, deoxythymidine diphosphate (dTDP)-l-rhamnose, and sucrose], nucleotides, 4-aminobutanoate, methylglyoxal, sulfate, and aromatic compounds (e.g., catechol and toluene). Meanwhile, several food groups were associated with the CMP-legionaminate biosynthesis pathway at FDR <0.05. Conclusions In a small longitudinal study of generally healthy, older Chinese adults, we found long-term healthy eating was associated with increased α-diversity of microbial gene families and metabolic pathways and altered symbiotic functions relevant to human nutrition and health.


2018 ◽  
Vol 84 (9) ◽  
Author(s):  
Cécile Revellin ◽  
Alain Hartmann ◽  
Sébastien Solanas ◽  
Edward Topp

ABSTRACTAntibiotics are entrained in agricultural soil through the application of manures from medicated animals. In the present study, a series of small field plots was established in 1999 that receive annual spring applications of a mixture of tylosin, sulfamethazine, and chlortetracycline at concentrations ranging from 0.1 to 10 mg · kg−1soil. These antibiotics are commonly used in commercial swine production. The field plots were cropped continuously for soybeans, and in 2012, after 14 annual antibiotic applications, the nodules from soybean roots were sampled and the occupying bradyrhizobia were characterized. Nodules and isolates were serotyped, and isolates were distinguished using 16S rRNA gene and 16S to 23S rRNA gene intergenic spacer region sequencing, multilocus sequence typing, and RSα fingerprinting. Treatment with the antibiotic mixture skewed the population of bradyrhizobia dominating the nodule occupancy, with a significantly larger proportion ofBradyrhizobium liaoningenseorganisms even at the lowest dose of 0.1 mg · kg−1soil. Likewise, all doses of antibiotics altered the distribution of RSα fingerprint types. Bradyrhizobia were phenotypically evaluated for their sensitivity to the antibiotics, and there was no association betweenin situtreatment and a decreased sensitivity to the drugs. Overall, long-term exposure to the antibiotic mixture altered the composition of bradyrhizobial populations occupying nitrogen-fixing nodules, apparently through an indirect effect not associated with the sensitivity to the drugs. Further work evaluating agronomic impacts is warranted.IMPORTANCEAntibiotics are entrained in agricultural soil through the application of animal or human waste or by irrigation with reused wastewater. Soybeans obtain nitrogen through symbiotic nitrogen fixation. Here, we evaluated the impact of 14 annual exposures to antibiotics commonly used in swine production on the distribution of bradyrhizobia occupying nitrogen-fixing nodules on soybean roots in a long-term field experiment. By means of various sequencing and genomic fingerprinting techniques, the repeated exposure to a mixture of tylosin, sulfamethazine, and chlortetracycline each at a nominal soil concentration of 0.1 mg · kg−1soil was found to modify the diversity and identity of bradyrhizobia occupying the nodules. Nodule occupancy was not associated with the level of sensitivity to the antibiotics, indicating that the observed effects were not due to the direct toxicity of the antibiotics on bradyrhizobia. Altogether, these results indicate the potential for long-term impacts of antibiotics on this agronomically important symbiosis.


2020 ◽  
Vol 139 ◽  
pp. 105705 ◽  
Author(s):  
Tharushi Prabha Keerthisinghe ◽  
Feng Wang ◽  
Mengjing Wang ◽  
Qin Yang ◽  
Jiawei Li ◽  
...  

2018 ◽  
Vol 5 (8) ◽  
Author(s):  
Thuy Doan ◽  
Armin Hinterwirth ◽  
Ahmed M Arzika ◽  
Sun Y Cotter ◽  
Kathryn J Ray ◽  
...  

Abstract Background Mass distributions of oral azithromycin have long been used to eliminate trachoma, and they are now being proposed to reduce childhood mortality. The observed benefit appears to be augmented with each additional treatment, suggesting a possible community-level effect. Here, we assess whether 2 biannual mass treatments of preschool children affect the community’s gut microbiome at 6 months after the last distribution. Methods In this cluster-randomized controlled trial, children aged 1–60 months in the Dossa region of Niger were randomized at the village level to receive a single dose of azithromycin or placebo every 6 months. Fecal samples were collected 6 months after the second treatment for metagenomic deep sequencing. The prespecified primary outcome was the Euclidean PERMANOVA of the gut microbiome, or effectively the distance between the genus-level centroid at the community level, with the secondary outcome being the Simpson’s α diversity. Results In the azithromycin arm, the gut microbial structures were significantly different than in the placebo arm (Euclidean PERMANOVA, P < .001). Further, the diversity of the gut microbiome in the azithromycin arm was significantly lower than in the placebo arm (inverse Simpson’s index, P = .005). Conclusions Two mass azithromycin administrations, 6 months apart, in preschool children led to long-term alterations of the gut microbiome structure and community diversity. Here, long-term microbial alterations in the community did not imply disease but were associated with an improvement in childhood mortality. Clinical Trials Registration NCT02048007.


Sign in / Sign up

Export Citation Format

Share Document