scholarly journals Siderophore-Mediated Interactions Determine the Disease Suppressiveness of Microbial Consortia

mSystems ◽  
2020 ◽  
Vol 5 (3) ◽  
Author(s):  
Shaohua Gu ◽  
Tianjie Yang ◽  
Zhengying Shao ◽  
Tao Wang ◽  
Kehao Cao ◽  
...  

ABSTRACT Interactions between plant pathogens and root-associated microbes play an important role in determining disease outcomes. While several studies have suggested that steering these interactions may improve plant health, such approaches have remained challenging in practice. Because of low iron availability in most soils, competition for iron via secreted siderophore molecules might influence microbial interaction outcomes. Here, we tested if bacterial interactions mediated by iron-scavenging siderophores can be used to predict the disease suppressiveness of microbial consortia against soilborne Ralstonia solanacearum, a bacterial pathogen in the tomato rhizosphere. Iron availability significantly affected the interactions within inoculated consortia and between the consortia and the pathogen. We observed contrasting effects of siderophores and other nonsiderophore metabolites on the pathogen growth, while the siderophore effects were relatively much stronger. Specifically, disease incidence was reduced in vivo when the inoculated consortia produced siderophores that the pathogen could not use for its own growth. Employing siderophore-mediated interactions to engineer functionally robust microbial inoculants shows promise in protecting plants from soilborne pathogens. IMPORTANCE Soil-borne pathogens cause high losses in crop yields globally. The development of environmentally friendly approaches is urgently needed, but is often constrained by complex interactions between root-associated microbes and pathogens. Here, we demonstrate that the interactions within microbial consortia mediated by iron-scavenging siderophores play an important role in reducing pathogen infection and enhancing plant health. This study provides a promising and novel research direction for dealing with a wide range of microbial infections through iron exploitation, which is important for the colonization and infection of both plant and human hosts by pathogens.

2015 ◽  
Vol 59 (4) ◽  
pp. 2113-2121 ◽  
Author(s):  
U. Malik ◽  
O. N. Silva ◽  
I. C. M. Fensterseifer ◽  
L. Y. Chan ◽  
R. J. Clark ◽  
...  

ABSTRACTStaphylococcus aureusis a virulent pathogen that is responsible for a wide range of superficial and invasive infections. Its resistance to existing antimicrobial drugs is a global problem, and the development of novel antimicrobial agents is crucial. Antimicrobial peptides from natural resources offer potential as new treatments against staphylococcal infections. In the current study, we have examined the antimicrobial properties of peptides isolated from anuran skin secretions and cyclized synthetic analogues of these peptides. The structures of the peptides were elucidated by nuclear magnetic resonance (NMR) spectroscopy, revealing high structural and sequence similarity with each other and with sunflower trypsin inhibitor 1 (SFTI-1). SFTI-1 is an ultrastable cyclic peptide isolated from sunflower seeds that has subnanomolar trypsin inhibitory activity, and this scaffold offers pharmaceutically relevant characteristics. The five anuran peptides were nonhemolytic and noncytotoxic and had trypsin inhibitory activities similar to that of SFTI-1. They demonstrated weakin vitroinhibitory activities againstS. aureus, but several had strong antibacterial activities againstS. aureusin anin vivomurine wound infection model. pYR, an immunomodulatory peptide fromRana sevosa, was the most potent, with complete bacterial clearance at 3 mg · kg−1. Cyclization of the peptides improved their stability but was associated with a concomitant decrease in antimicrobial activity. In summary, these anuran peptides are promising as novel therapeutic agents for treating infections from a clinically resistant pathogen.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2393
Author(s):  
Xiuping Wang ◽  
Fei Peng ◽  
Caihong Cheng ◽  
Lina Chen ◽  
Xuejuan Shi ◽  
...  

Plant pathogens constantly develop resistance to antimicrobial agents, and this poses great challenges to plant protection. Therefore, there is a pressing need to search for new antimicrobials. The combined use of antimicrobial agents with different antifungal mechanisms has been recognized as a promising approach to manage plant diseases. Graphene oxide (GO) is a newly emerging and highly promising antimicrobial agent against various plant pathogens in agricultural science. In this study, the inhibitory activity of GO combined with fungicides (Mancozeb, Cyproconazol and Difenoconazole) against Fusarium graminearum was investigated in vivo and in vitro. The results revealed that the combination of GO and fungicides has significant synergistic inhibitory effects on the mycelial growth, mycelial biomass and spore germination of F. graminearum relative to single fungicides. The magnitude of synergy was found to depend on the ratio of GO and fungicide in the composite. In field tests, GO–fungicides could significantly reduce the disease incidence and disease severity, exhibiting a significantly improved control efficacy on F. graminearum. The strong synergistic activity of GO with existing fungicides demonstrates the great application potential of GO in pest management.


2018 ◽  
Vol 87 (3) ◽  
Author(s):  
Lauren E. Hartley-Tassell ◽  
Milena M. Awad ◽  
Kate L. Seib ◽  
Maria Scarselli ◽  
Silvana Savino ◽  
...  

ABSTRACTClostridium difficileis a major cause of hospital-acquired antibiotic-associated diarrhea.C. difficileproduces two cytotoxins, TcdA and TcdB; both toxins are multidomain proteins that lead to cytotoxicity through the modification and inactivation of small GTPases of the Rho/Rac family. Previous studies have indicated that host glycans are targets for TcdA and TcdB, with interactions thought to be with both α- and β-linked galactose. In the current study, screening of glycan arrays with different domains of TcdA and TcdB revealed that the binding regions of both toxins interact with a wider range of host glycoconjugates than just terminal α- and β-linked galactose, including blood groups, Lewis antigens,N-acetylglucosamine, mannose, and glycosaminoglycans. The interactions of TcdA and TcdB with ABO blood group and Lewis antigens were assessed by surface plasmon resonance (SPR). The blood group A antigen was the highest-affinity ligand for both toxins. Free glycans alone or in combination were unable to abolish Vero cell cytotoxicity by TcdB. SPR competition assays indicate that there is more than one glycan binding site on TcdB. Host glycoconjugates are common targets of bacterial toxins, but typically this binding is to a specific structure or related structures. The binding of TcdA and TcdB is to a wide range of host glycans providing a wide range of target cells and tissuesin vivo.


2019 ◽  
Vol 93 (18) ◽  
Author(s):  
Artem Baidaliuk ◽  
Elliott F. Miot ◽  
Sebastian Lequime ◽  
Isabelle Moltini-Conclois ◽  
Fanny Delaigue ◽  
...  

ABSTRACT Aedes aegypti mosquitoes are the main vectors of arthropod-borne viruses (arboviruses) of public health significance, such as the flaviviruses dengue virus (DENV) and Zika virus (ZIKV). Mosquitoes are also the natural hosts of a wide range of viruses that are insect specific, raising the question of their influence on arbovirus transmission in nature. Cell-fusing agent virus (CFAV) was the first described insect-specific flavivirus, initially discovered in an A. aegypti cell line and subsequently detected in natural A. aegypti populations. It was recently shown that DENV and the CFAV strain isolated from the A. aegypti cell line have mutually beneficial interactions in mosquito cells in culture. However, whether natural strains of CFAV and DENV interact in live mosquitoes is unknown. Using a wild-type CFAV isolate recently derived from Thai A. aegypti mosquitoes, we found that CFAV negatively interferes with both DENV type 1 and ZIKV in vitro and in vivo. For both arboviruses, prior infection by CFAV reduced the dissemination titer in mosquito head tissues. Our results indicate that the interactions observed between arboviruses and the CFAV strain derived from the cell line might not be a relevant model of the viral interference that we observed in vivo. Overall, our study supports the hypothesis that insect-specific flaviviruses may contribute to reduce the transmission of human-pathogenic flaviviruses. IMPORTANCE The mosquito Aedes aegypti carries several arthropod-borne viruses (arboviruses) that are pathogenic to humans, including dengue and Zika viruses. Interestingly, A. aegypti is also naturally infected with insect-only viruses, such as cell-fusing agent virus. Although interactions between cell-fusing agent virus and dengue virus have been documented in mosquito cells in culture, whether wild strains of cell-fusing agent virus interfere with arbovirus transmission by live mosquitoes was unknown. We used an experimental approach to demonstrate that cell-fusing agent virus infection reduces the propagation of dengue and Zika viruses in A. aegypti mosquitoes. These results support the idea that insect-only viruses in nature can modulate the ability of mosquitoes to carry arboviruses of medical significance and that they could possibly be manipulated to reduce arbovirus transmission.


2019 ◽  
Vol 64 (2) ◽  
Author(s):  
Ren-Yi Lu ◽  
Ting-Jun-Hong Ni ◽  
Jing Wu ◽  
Lan Yan ◽  
Quan-Zhen Lv ◽  
...  

ABSTRACT In the past decades, the incidence of cryptococcosis has increased dramatically, which poses a new threat to human health. However, only a few drugs are available for the treatment of cryptococcosis. Here, we described a leading compound, NT-a9, an analogue of isavuconazole, that showed strong antifungal activities in vitro and in vivo. NT-a9 showed a wide range of activities against several pathogenic fungi in vitro, including Cryptococcus neoformans, Cryptococcus gattii, Candida albicans, Candida krusei, Candida tropicalis, Candida glabrata, and Candida parapsilosis, with MICs ranging from 0.002 to 1 μg/ml. In particular, NT-a9 exhibited excellent efficacy against C. neoformans, with a MIC as low as 0.002 μg/ml. NT-a9 treatment resulted in changes in the sterol contents in C. neoformans, similarly to fluconazole. In addition, NT-a9 possessed relatively low cytotoxicity and a high selectivity index. The in vivo efficacy of NT-a9 was assessed using a murine disseminated-cryptococcosis model. Mice were infected intravenously with 1.8 × 106 CFU of C. neoformans strain H99. In the survival study, NT-a9 significantly prolonged the survival times of mice compared with the survival times of the control group or the isavuconazole-, fluconazole-, or amphotericin B-treated groups. Of note, 4 and 8 mg/kg of body weight of NT-a9 rescued all the mice, with a survival rate of 100%. In the fungal-burden study, NT-a9 also significantly reduced the fungal burdens in brains and lungs, while fluconazole and amphotericin B only reduced the fungal burden in lungs. Taken together, these data suggested that NT-a9 is a promising antifungal candidate for the treatment of cryptococcosis infection.


2020 ◽  
Vol 86 (24) ◽  
Author(s):  
Erin M. Nawrocki ◽  
Hillary M. Mosso ◽  
Edward G. Dudley

ABSTRACT Enterohemorrhagic Escherichia coli (EHEC) strains, including E. coli O157:H7, cause severe illness in humans due to the production of Shiga toxin (Stx) and other virulence factors. Because Stx is coregulated with lambdoid prophage induction, its expression is especially susceptible to environmental cues. Infections with Stx-producing E. coli can be difficult to model due to the wide range of disease outcomes: some infections are relatively mild, while others have serious complications. Probiotic organisms, members of the gut microbiome, and organic acids can depress Stx production, in many cases by inhibiting the growth of EHEC strains. On the other hand, the factors currently known to amplify Stx act via their effect on the stx-converting phage. Here, we characterize two interactive mechanisms that increase Stx production by O157:H7 strains: first, direct interactions with phage-susceptible E. coli, and second, indirect amplification by secreted factors. Infection of susceptible strains by the stx-converting phage can expand the Stx-producing population in a human or animal host, and phage infection has been shown to modulate virulence in vitro and in vivo. Acellular factors, particularly colicins and microcins, can kill O157:H7 cells but may also trigger Stx expression in the process. Colicins, microcins, and other bacteriocins have diverse cellular targets, and many such molecules remain uncharacterized. The identification of additional Stx-amplifying microbial interactions will improve our understanding of E. coli O157:H7 infections and help elucidate the intricate regulation of pathogenicity in EHEC strains.


2015 ◽  
Vol 81 (15) ◽  
pp. 4984-4992 ◽  
Author(s):  
Teng Chu ◽  
Yajun Huang ◽  
Mingyu Hou ◽  
Qiyao Wang ◽  
Jingfan Xiao ◽  
...  

ABSTRACTThe quorum sensing (QS) system, as a well-functioning population-dependent gene switch, has been widely applied in many gene circuits in synthetic biology. In our work, an efficient cell density-controlled expression system (QS) was established via engineering of theVibrio fischeri luxI-luxRquorum sensing system. In order to achievein vivoprogrammed gene expression, a synthetic binary regulation circuit (araQS) was constructed by assembling multiple genetic components, including the quorum quenching protein AiiA and the arabinose promoter ParaBAD, into the QS system.In vitroexpression assays verified that the araQS system was initiated only in the absence of arabinose in the medium at a high cell density.In vivoexpression assays confirmed that the araQS system presented anin vivo-triggered and cell density-dependent expression pattern. Furthermore, the araQS system was demonstrated to function well in different bacteria, indicating a wide range of bacterial hosts for use. To explore its potential applicationsin vivo, the araQS system was used to control the production of a heterologous protective antigen in an attenuatedEdwardsiella tardastrain, which successfully evoked efficient immune protection in a fish model. This work suggested that the araQS system could program bacterial expressionin vivoand might have potential uses, including, but not limited to, bacterial vector vaccines.


2011 ◽  
Author(s):  

The Center for Plant Health Science and Technology (CPHST) provides scientific support for the regulatory decisions and operations of the Animal and Plant Health Inspection Service’s (APHIS) Plant Protection and Quarantine (PPQ) program in order to safeguard U.S. agriculture and natural resources. CPHST is responsible for ensuring that PPQ has the information, tools, and technology to make the most scientifically valid regulatory and policy decisions possible. In addition, CPHST ensures that PPQ’s operations have the most scientifically viable and practical tools for pest exclusion, detection, and management. This 2009 CPHST Annual Report is intended to offer an in-depth look at the status of our programs and the progress CPHST has made toward the Center’s long-term strategic goals. CPHST's work is organized into six National Science Programs: Agricultural Quarantine Inspection and Port Technology; Risk and Pathway Analysis; Domestic Surveillance, Detection, and Identification; Emergency Response; Response and Recovery Systems Technology - Arthropods; and Response and Recovery Systems Technology - Plant Pathogens and Weeds. the scientists of CPHST provide leadership and expertise in a wide range of fields, including risk assessments that support trade, commodity quarantine treatments, pest survey and detection methods, molecular diagnostics, biological control techniques, integrated pest management, and mass rearing of insects. Some highlights of significant CPHST efforts in 2009 include: Establishment of the National Ornamentals Research Site at Dominican University of California, Established LBAM Integrated Pest Management and Survey Methods, Continue to develop Citrus Greening/Huanglongbing Management Tools, and further European Grapevine Moth (EGVM) Response.


Foods ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 365 ◽  
Author(s):  
Robin Raveau ◽  
Joël Fontaine ◽  
Anissa Lounès-Hadj Sahraoui

Naturally produced by aromatic plants, essential oils (EO) contain a wide range of volatile molecules, including mostly secondary metabolites, which possess several biological activities. Essential oils properties such as antioxidant, antimicrobial and anti-inflammatory activities are known for a long time and hence widely used in traditional medicines, cosmetics and food industries. However, despite their effects against many phytopathogenic fungi, oomycetes and bacteria as well as weeds, their use in agriculture remains surprisingly scarce. The purpose of the present review is to gather and discuss up-to-date biological activities of EO against weeds, plant pathogenic fungi, oomycetes and bacteria, reported in the scientific literature. Innovative methods, potentially valuable to improve the efficiency and reliability of EO, have been investigated. In particular, their use towards a more sustainable agriculture has been discussed, aiming at encouraging the use of alternative products to substitute synthetic pesticides to control weeds and plant diseases, without significantly affecting crop yields. An overview of the market and the recent advances on the regulation of these products as well as future challenges to promote their development and wider use in disease management programs is described. Because of several recent reviews on EO insecticidal properties, this topic is not covered in the present review.


2020 ◽  
Vol 86 (6) ◽  
Author(s):  
Daniel Youdkes ◽  
Yael Helman ◽  
Saul Burdman ◽  
Ofra Matan ◽  
Edouard Jurkevitch

ABSTRACT Bacterial soft rot diseases caused by Pectobacterium spp. and Dickeya spp. affect a wide range of crops, including potatoes, a major food crop. As of today, farmers mostly rely on sanitary practices, water management, and plant nutrition for control. We tested the bacterial predators Bdellovibrio and like organisms (BALOs) to control potato soft rot. BALOs are small, motile predatory bacteria found in terrestrial and aquatic environments. They prey on a wide range of Gram-negative bacteria, including animal and plant pathogens. To this end, BALO strains HD100, 109J, and a ΔmerRNA derivative of HD100 were shown to efficiently prey on various rot-causing strains of Pectobacterium and Dickeya solani. BALO control of maceration caused by a highly virulent strain of Pectobacterium carotovorum subsp. brasilense was then tested in situ using a potato slice assay. All BALO strains were highly effective at reducing disease, up to complete prevention. Effectivity was concentration dependent, and BALOs applied before P. carotovorum subsp. brasilense inoculation performed significantly better than those applied after the disease-causing agent, maybe due to in situ consumption of glucose by the prey, as glucose metabolism by live prey bacteria was shown to prevent predation. Dead predators and the supernatant of BALO cultures did not significantly prevent maceration, indicating that predation was the major mechanism for the prevention of the disease. Finally, plastic resistance to predation was affected by prey and predator population parameters, suggesting that population dynamics affect prey response to predation. IMPORTANCE Bacterial soft rot diseases caused by Pectobacterium spp. and Dickeya spp. are among the most important plant diseases caused by bacteria. Among other crops, they inflict large-scale damage to potatoes. As of today, farmers have few options to control them. The bacteria Bdellovibrio and like organisms (BALOs) are obligate predators of bacteria. We tested their potential to prey on Pectobacterium spp. and Dickeya spp. and to protect potato. We show that different BALOs can prey on soft rot-causing bacteria and prevent their growth in situ, precluding tissue maceration. Dead predators and the supernatant of BALO cultures did not significantly prevent maceration, showing that the effect is due to predation. Soft rot control by the predators was concentration dependent and was higher when the predator was inoculated ahead of the prey. As residual prey remained, we investigated what determines their level and found that initial prey and predator population parameters affect prey response to predation.


Sign in / Sign up

Export Citation Format

Share Document