scholarly journals Genomic Insights into Adaptations of Trimethylamine-Utilizing Methanogens to Diverse Habitats, Including the Human Gut

mSystems ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Jacobo de la Cuesta-Zuluaga ◽  
Tim D. Spector ◽  
Nicholas D. Youngblut ◽  
Ruth E. Ley

ABSTRACT Archaea of the order Methanomassiliicoccales use methylated amines such as trimethylamine as the substrates for methanogenesis. They form two large phylogenetic clades and reside in diverse environments, from soil to the human gut. Two genera, one from each clade, inhabit the human gut: Methanomassiliicoccus, which has one cultured representative, and “Candidatus Methanomethylophilus,” which has none. Questions remain regarding their distribution across biomes and human populations, their association with other taxa in the gut, and whether host genetics correlate with their abundance. To gain insight into the Methanomassiliicoccales clade, particularly its human-associated members, we performed a genomic comparison of 72 Methanomassiliicoccales genomes and assessed their presence in metagenomes derived from the human gut (n = 4,472, representing 22 populations), nonhuman animal gut (n = 145), and nonhost environments (n = 160). Our analyses showed that all taxa are generalists; they were detected in animal gut and environmental samples. We confirmed two large clades, one enriched in the gut and the other enriched in the environment, with notable exceptions. Genomic adaptations to the gut include genome reduction and genes involved in the shikimate pathway and bile resistance. Genomic adaptations differed by clade, not habitat preference, indicating convergent evolution between the clades. In the human gut, the relative abundance of Methanomassiliicoccales spp. correlated with trimethylamine-producing bacteria and was unrelated to host genotype. Our results shed light on the microbial ecology of this group and may help guide Methanomassiliicoccales-based strategies for trimethylamine mitigation in cardiovascular disease. IMPORTANCE Methanomassiliicoccales are less-known members of the human gut archaeome. Members of this order use methylated amines, including trimethylamine, in methane production. This group has only one cultured representative; how its members adapted to inhabit the mammalian gut and how they interact with other microbes is largely unknown. Using bioinformatics methods applied to DNA from a wide range of samples, we profiled the abundances of these Archaea spp. in environmental and host-associated microbial communities. We observed two groups of Methanomassiliicoccales, one largely host associated and one largely found in environmental samples, with some exceptions. When host associated, these Archaea have smaller genomes and possess genes related to bile resistance and aromatic amino acid precursors. We did not detect Methanomassiliicoccales in all human populations tested, but when present, they were correlated with bacteria known to produce trimethylamine. Due to their metabolism of trimethylamine, these intriguing Archaea may form the basis of novel therapies for cardiovascular disease.

Author(s):  
Jacobo de la Cuesta-Zuluaga ◽  
Timothy D. Spector ◽  
Nicholas D. Youngblut ◽  
Ruth E. Ley

AbstractArchaea of the order Methanomassiliicoccales use methylated-amines such as trimethylamine as a substrate for methane production. They form two large phylogenetic clades and reside in diverse environments, from soil to the human gut. Two genera, one from each clade, inhabit the human gut: Methanomassiliicoccus, which has one cultured representative, and “candidatus Methanomethylophilus”, which has none. Questions remain regarding their distribution across different biomes and human populations, their association with other taxa in the human gut, and whether host genetics correlate with their abundance. To gain insight into the Methanomassiliicoccales, and the human-associated members in particular, we performed a genomic comparison of 72 Methanomassiliicoccales genomes and assessed their presence in metagenomes derived from the human gut (n=4472 representing 25 populations), nonhuman animal gut (n=145) and nonhost environments (n=160). Our analyses showed that all taxa are generalists: they were detected in animal gut and environmental samples. We confirmed two large clades, one enriched in the gut, the other enriched in the environment, with notable exceptions. Genomic adaptations to the gut include genome reduction, a set of adhesion factors distinct from that of environmental taxa, and genes involved in the shikimate pathway and bile resistance. Genomic adaptations differed by clade, not habitat preference, indicating convergent evolution between the clades. In the human gut, the relative abundance of Methanomassiliicoccales correlated with trimethylamine-producing bacteria and was unrelated to host genotype. Our results shed light on the microbial ecology of this group may help guide Methanomassiliicoccales-based strategies for trimethylamine mitigation in cardiovascular disease.ImportanceMethanomassiliicoccales are a lesser known component of the human gut microbiota. This archaeal order is composed of methane producers that use methylated amines, such as trimethylamine, in methane production. This group has only one cultured representative; how they adapted to inhabit the mammalian gut and how they interact with other microbes is largely unknown. Using bioinformatics methods applied to DNA from a wide range of samples, we profiled the relative abundances of these archaea in environmental and host-associated microbial communities. We observed two groups of Methanomassiliicoccales, one largely host-associated and one largely found in environmental samples, with some exceptions. When host-associated, these archaea have a distinct set of genes related to adhesion and possess genes related to bile resistance. We did not detect Methanomassiliicoccales in all human populations tested but when present, they are correlated with Bacteria known to produce trimethylamine. Since trimethylamine is linked to cardiovascular disease risk, these intriguing Archaea may also be involved.


2020 ◽  
Vol 202 (18) ◽  
Author(s):  
Neetu Neetu ◽  
Madhusudhanarao Katiki ◽  
Aditya Dev ◽  
Stuti Gaur ◽  
Shailly Tomar ◽  
...  

ABSTRACT Chlorogenic acid (CGA) is a phenolic compound with well-known antibacterial properties against pathogens. In this study, structural and biochemical characterization was used to show the inhibitory role of CGA against the enzyme of the shikimate pathway, a well-characterized drug target in several pathogens. Here, we report the crystal structures of dehydroquinate synthase (DHQS), the second enzyme of the shikimate pathway, from Providencia alcalifaciens (PaDHQS), in binary complex with NAD and ternary complex with NAD and CGA. Structural analyses reveal that CGA occupies the substrate position in the active site of PaDHQS, which disables domain movements, leaving the enzyme in an open and catalysis-incompetent state. The binding analyses by isothermal titration calorimetry (ITC) and surface plasmon resonance (SPR) show that CGA binds to PaDHQS with KD (equilibrium dissociation constant) values of 6.3 μM and 0.5 μM, respectively. In vitro enzyme inhibition studies show that CGA inhibits PaDHQS with a Ki of 235 ± 21 μM, while it inhibits the growth of Providencia alcalifaciens, Moraxella catarrhalis, Staphylococcus aureus, and Escherichia coli with MIC values of 60 to 100 μM. In the presence of aromatic amino acids supplied externally, CGA does not show the toxic effect. These results, along with the observations of the inhibition of the 3-deoxy-d-arabino-heptulosonate-7-phosphate (DAHP) regulatory domain by CGA in our previous study, suggest that CGA binds to shikimate pathway enzymes with high affinity and inhibits their catalysis and can be further exploited for designing novel drug-like molecules. IMPORTANCE The shikimate pathway is an attractive target for the development of herbicides and antimicrobial agents, as it is essential in plants, bacteria, and apicomplexan parasites but absent in humans. The enzymes of shikimate pathway are conserved among bacteria. Thus, the inhibitors of the shikimate pathway act on wide range of pathogens. We have identified that chlorogenic acid targets the enzymes of the shikimate pathway. The crystal structure of dehydroquinate synthase, the second enzyme of the pathway, in complex with chlorogenic acid and enzymatic inhibition studies explains the mechanism of inhibition of chlorogenic acid. These results suggest that chlorogenic acid has a good chemical scaffold and have important implications for its further development as a potent inhibitor of shikimate pathway enzymes.


mBio ◽  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Albane Ruaud ◽  
Sofia Esquivel-Elizondo ◽  
Jacobo de la Cuesta-Zuluaga ◽  
Jillian L. Waters ◽  
Largus T. Angenent ◽  
...  

ABSTRACT Across human populations, 16S rRNA gene-based surveys of gut microbiomes have revealed that the bacterial family Christensenellaceae and the archaeal family Methanobacteriaceae cooccur and are enriched in individuals with a lean, compared to an obese, body mass index (BMI). Whether these association patterns reflect interactions between metabolic partners, as well as whether these associations play a role in the lean host phenotype with which they associate, remains to be ascertained. Here, we validated previously reported cooccurrence patterns of the two families and their association with a lean BMI with a meta-analysis of 1,821 metagenomes derived from 10 independent studies. Furthermore, we report positive associations at the genus and species levels between Christensenella spp. and Methanobrevibacter smithii, the most abundant methanogen of the human gut. By coculturing three Christensenella spp. with M. smithii, we show that Christensenella spp. efficiently support the metabolism of M. smithii via H2 production far better than Bacteroides thetaiotaomicron does. Christensenella minuta forms flocs colonized by M. smithii even when H2 is in excess. In culture with C. minuta, H2 consumption by M. smithii shifts the metabolic output of C. minuta’s fermentation toward acetate rather than butyrate. Together, these results indicate that the widespread cooccurrence of these microorganisms is underpinned by both physical and metabolic interactions. Their combined metabolic activity may provide insights into their association with a lean host BMI. IMPORTANCE The human gut microbiome is made of trillions of microbial cells, most of which are Bacteria, with a subset of Archaea. The bacterial family Christensenellaceae and the archaeal family Methanobacteriaceae are widespread in human guts. They correlate with each other and with a lean body type. Whether species of these two families interact and how they affect the body type are unanswered questions. Here, we show that species within these families correlate with each other across people. We also demonstrate that particular species of these two families grow together in dense flocs, wherein the bacteria provide hydrogen gas to the archaea, which then make methane. When the archaea are present, the ratio of bacterial products (which are nutrients for humans) is changed. These observations indicate that when these species grow together, their products have the potential to affect the physiology of their human host.


2016 ◽  
Vol 198 (18) ◽  
pp. 2410-2418 ◽  
Author(s):  
Yanlu Cao ◽  
Konrad U. Förstner ◽  
Jörg Vogel ◽  
C. Jeffrey Smith

ABSTRACTBacteroidesis a major component of the human gut microbiota which has a broad impact on the development and physiology of its host and a potential role in a wide range of disease syndromes. The predominance of this genus is due in large part to expansion of paralogous gene clusters, termedpolysaccharideutilizationloci (PULs), dedicated to the uptake and catabolism of host-derived and dietary polysaccharides. The nutritive value and availability of polysaccharides in the gut vary greatly; thus, their utilization is hierarchical and strictly controlled. A typical PUL includes regulatory genes that induce PUL expression in response to the presence of specific glycan substrates. However, the existence of additional regulatory mechanisms has been predicted to explain phenomena such as hierarchical control and catabolite repression. In this report, a previously unknown layer of regulatory control was discovered inBacteroides fragilis. Exploratory transcriptome sequencing (RNA-seq) analysis revealed the presence ofcis-encoded antisense small RNAs (sRNAs) associated with 15 (30%) of theB. fragilisPULs. A model system using the Don (degradation of N-glycans) PUL showed that thedonSsRNA negatively regulated Don expression at the transcriptional level, resulting in a decrease in N-glycan utilization. Additional studies performed with otherBacteroidesspecies indicated that this regulatory mechanism is highly conserved and, interestingly, that the regulated PULs appear to be closely linked to the utilization of host-derived glycans rather than dietary plant polysaccharides. The findings described here demonstrate a global control mechanism underlying known PUL regulatory circuits and provide insight into regulation ofBacteroidesphysiology.IMPORTANCEThe human gut is colonized by a dense microbiota which is essential to the health and normal development of the host. A key to gut homeostasis is the preservation of a stable, diverse microbiota.Bacteroidesis a dominant genus in the gut, and the ability ofBacteroidesspecies to efficiently compete for a wide range of glycan energy sources is a crucial advantage for colonization. Glycan utilization is mediated by a large number ofpolysaccharideutilizationloci (PULs) which are regulated by substrate induction. In this report, a novel family of antisense sRNAs is described whose members repress gene expression in a distinct subset of PULs. This repression downregulates PUL expression in the presence of energy sources that are more readily utilized such as glucose, thereby allowing efficient glycan utilization.


mSphere ◽  
2016 ◽  
Vol 1 (6) ◽  
Author(s):  
Pim T. van Leeuwen ◽  
Jasper M. van der Peet ◽  
Floris J. Bikker ◽  
Michel A. Hoogenkamp ◽  
Ana M. Oliveira Paiva ◽  
...  

ABSTRACT Candida albicans and Clostridium difficile are two opportunistic pathogens that reside in the human gut. A few studies have focused on the prevalence of C. albicans in C. difficile-infected patients, but none have shown the interaction(s) that these two organisms may or may not have with each other. In this study, we used a wide range of different techniques to better understand this interaction at a macroscopic and microscopic level. We found that in the presence of C. albicans, C. difficile can survive under ambient aerobic conditions, which would otherwise be toxic. We also found that C. difficile affects the hypha formation of C. albicans, most likely through the excretion of p-cresol. This ultimately leads to an inability of C. albicans to form a biofilm. Our study provides new insights into interactions between C. albicans and C. difficile and bears relevance to both fungal and bacterial disease. The facultative anaerobic polymorphic fungus Candida albicans and the strictly anaerobic Gram-positive bacterium Clostridium difficile are two opportunistic pathogens residing in the human gut. While a few studies have focused on the prevalence of C. albicans in C. difficile-infected patients, the nature of the interactions between these two microbes has not been studied thus far. In the current study, both chemical and physical interactions between C. albicans and C. difficile were investigated. In the presence of C. albicans, C. difficile was able to grow under aerobic, normally toxic, conditions. This phenomenon was neither linked to adherence of bacteria to hyphae nor to biofilm formation by C. albicans. Conditioned medium of C. difficile inhibited hyphal growth of C. albicans, which is an important virulence factor of the fungus. In addition, it induced hypha-to-yeast conversion. p-Cresol, a fermentation product of tyrosine produced by C. difficile, also induced morphological effects and was identified as an active component of the conditioned medium. This study shows that in the presence of C. albicans, C. difficile can persist and grow under aerobic conditions. Furthermore, p-cresol, produced by C. difficile, is involved in inhibiting hypha formation of C. albicans, directly affecting the biofilm formation and virulence of C. albicans. This study is the first detailed characterization of the interactions between these two gut pathogens. IMPORTANCE Candida albicans and Clostridium difficile are two opportunistic pathogens that reside in the human gut. A few studies have focused on the prevalence of C. albicans in C. difficile-infected patients, but none have shown the interaction(s) that these two organisms may or may not have with each other. In this study, we used a wide range of different techniques to better understand this interaction at a macroscopic and microscopic level. We found that in the presence of C. albicans, C. difficile can survive under ambient aerobic conditions, which would otherwise be toxic. We also found that C. difficile affects the hypha formation of C. albicans, most likely through the excretion of p-cresol. This ultimately leads to an inability of C. albicans to form a biofilm. Our study provides new insights into interactions between C. albicans and C. difficile and bears relevance to both fungal and bacterial disease.


2018 ◽  
Vol 84 (14) ◽  
Author(s):  
Christian Milani ◽  
Sabrina Duranti ◽  
Marta Mangifesta ◽  
Gabriele Andrea Lugli ◽  
Francesca Turroni ◽  
...  

ABSTRACT The genus Lactobacillus is a widespread taxon, members of which are highly relevant to functional and fermented foods, while they are also commonly present in host-associated gut and vaginal microbiota. Substantial efforts have been undertaken to disclose the genetic repertoire of all members of the genus Lactobacillus , and yet their species-level profiling in complex matrices is still undeveloped due to the poor phylotype resolution of profiling approaches based on the 16S rRNA gene. To overcome this limitation, an internal transcribed spacer (ITS)-based profiling method was developed to accurately profile lactobacilli at the species level. This approach encompasses a genus-specific primer pair combined with a database of ITS sequences retrieved from all available Lactobacillus genomes and a script for the QIIME software suite that performs all required steps to reconstruct a species-level profile. This methodology was applied to several environments, i.e., human gut and vagina and the ceca of free-range chickens, as well as whey and fresh cheese. Interestingly, the data collected confirmed a relevant role of lactobacilli present in functional and fermented foods in defining the population harbored by the human gut, while, unsurprisingly perhaps, the ceca of free-range chickens were observed to be dominated by lactobacilli characterized in birds living in natural environments. Moreover, vaginal swabs confirmed the existence of previously hypothesized community state types, while analysis of whey and fresh cheese revealed a dominant presence of single Lactobacillus species used as starters for cheese production. Furthermore, application of this ITS profiling method to a mock Lactobacillus community allowed a minimal resolution level of <0.006 ng/μl. IMPORTANCE The genus Lactobacillus is a large and ubiquitous taxon of high scientific and commercial relevance. Despite the fact that the genetic repertoire of Lactobacillus species has been extensively characterized, the ecology of this genus has been explored by metataxonomic techniques that are accurate down to the genus or phylogenetic group level only. Thus, the distribution of lactobacilli in environmental or processed food samples is relatively unexplored. The profiling protocol described here relies on the use of the internal transcribed spacer to perform an accurate classification in a target population of lactobacilli with a <0.006-ng/μl sensitivity. This approach was used to analyze five sample types collected from both human and animal host-associated microbiota, as well as from the cheese production chain. The availability of a tool for species-level profiling of lactobacilli may be highly useful for both academic research and a wide range of industrial applications.


2015 ◽  
Vol 81 (7) ◽  
pp. 2481-2488 ◽  
Author(s):  
Volker Winstel ◽  
Petra Kühner ◽  
Bernhard Krismer ◽  
Andreas Peschel ◽  
Holger Rohde

ABSTRACTGenetic manipulation of emerging bacterial pathogens, such as coagulase-negative staphylococci (CoNS), is a major hurdle in clinical and basic microbiological research. Strong genetic barriers, such as restriction modification systems or clustered regularly interspaced short palindromic repeats (CRISPR), usually interfere with available techniques for DNA transformation and therefore complicate manipulation of CoNS or render it impossible. Thus, current knowledge of pathogenicity and virulence determinants of CoNS is very limited. Here, a rapid, efficient, and highly reliable technique is presented to transfer plasmid DNA essential for genetic engineering to important CoNS pathogens from a uniqueStaphylococcus aureusstrain via a specificS. aureusbacteriophage, Φ187. Even strains refractory to electroporation can be transduced by this technique once donor and recipient strains share similar Φ187 receptor properties. As a proof of principle, this technique was used to delete the alternative transcription factor sigma B (SigB) via allelic replacement in nasal and clinicalStaphylococcus epidermidisisolates at high efficiencies. The described approach will allow the genetic manipulation of a wide range of CoNS pathogens and might inspire research activities to manipulate other important pathogens in a similar fashion.


2017 ◽  
Vol 86 (3) ◽  
Author(s):  
Susan L. Brockmeier ◽  
Crystal L. Loving ◽  
Tracy L. Nicholson ◽  
Jinhong Wang ◽  
Sarah E. Peters ◽  
...  

ABSTRACT Streptococcus suis is a bacterium that is commonly carried in the respiratory tract and that is also one of the most important invasive pathogens of swine, commonly causing meningitis, arthritis, and septicemia. Due to the existence of many serotypes and a wide range of immune evasion capabilities, efficacious vaccines are not readily available. The selection of S. suis protein candidates for inclusion in a vaccine was accomplished by identifying fitness genes through a functional genomics screen and selecting conserved predicted surface-associated proteins. Five candidate proteins were selected for evaluation in a vaccine trial and administered both intranasally and intramuscularly with one of two different adjuvant formulations. Clinical protection was evaluated by subsequent intranasal challenge with virulent S. suis . While subunit vaccination with the S. suis proteins induced IgG antibodies to each individual protein and a cellular immune response to the pool of proteins and provided substantial protection from challenge with virulent S. suis , the immune response elicited and the degree of protection were dependent on the parenteral adjuvant given. Subunit vaccination induced IgG reactive against different S. suis serotypes, indicating a potential for cross protection.


2015 ◽  
Vol 19 (3) ◽  
pp. 433-455 ◽  
Author(s):  
Christina Ling-hsing Chang ◽  
Tung-Ching Lin

Purpose – The purpose of the study is to focus on the enhancement of knowledge management (KM) performance and the relationship between organizational culture and KM process intention of individuals because of the diversity of organizational cultures (which include results-oriented, tightly controlled, job-oriented, closed system and professional-oriented cultures). Knowledge is a primary resource in organizations. If firms are able to effectively manage their knowledge resources, then a wide range of benefits can be reaped such as improved corporate efficiency, effectiveness, innovation and customer service. Design/methodology/approach – The survey methodology, which has the ability to enhance generalization of results (Dooley, 2001), was used to collect the data utilized in the testing of the research hypotheses. Findings – Results- and job-oriented cultures have positive effects on employee intention in the KM process (creation, storage, transfer and application), whereas a tightly controlled culture has negative effects. Research limitations/implications – However, it would have been better to use a longitudinal study to collect useful long-term data to understand how the KM process would be influenced when organizational culture dimensions are changed through/by management. This is the first limitation of this study. According to Mason and Pauleen (2003), KM culture is a powerful predictor of individual knowledge-sharing behavior, which is not included in this study. Thus, this is the second limitation of this paper. Moreover, national culture could be an important issue in the KM process (Jacks et al., 2012), which is the third limitation of this paper for not comprising it. Practical implications – In researchers’ point of view, results- and job-oriented cultures have positive effects, whereas a tightly controlled culture has a negative effect on the KM process intention of the individual. These findings provide evidences that challenge the perspective of Kayworth and Leidner (2003) on this issue. As for practitioners, management has a direction to modify their organizational culture to improve the performance of KM process. Social implications – Both behavioral and value perspectives of the organizational cultural dimensions (results-oriented, tightly control, job-oriented, sociability, solidarity, need for achievement and democracy) should be examined to ascertain their effects firstly on KM culture and then on the KM process intention of the individual. It is hoped that the current study will spawn future investigations that lead to the development of an integrated model which includes organizational culture, KM culture and the KM process intention of the individual. Originality/value – The results-oriented, loosely controlled and job-oriented cultures will improve the effectiveness of the KM process and will also increase employees’ satisfaction and willingness to stay with the organization.


Kybernetes ◽  
2019 ◽  
Vol 48 (7) ◽  
pp. 1463-1477
Author(s):  
Olga Marino ◽  
Jaime Andres Gutierrez ◽  
Sandra Aguirre

Purpose This paper aims to propose and evaluate a pedagogically sound and innovative strategy to teach a higher education course that prepares future professionals to intelligently use information and communication technologies (ICTs) in their personal and professional lives. Design/methodology/approach The conceptual framework used for the design of the course was the socio-constructivism and activity theories. The implementation of the course was evaluated using the intrinsic case study methodology by including several instruments. Findings The pedagogical strategy proposed proved to be sound, as the evaluation showed that students were able to describe, use and propose innovative uses of a wide range of cutting-edge technologies in their both everyday lives and professional settings; they also had the skills to analyse the opportunities and challenges that these presented. Moreover, students liked this innovative way of learning and ended with a positive attitude towards ICT. Originality/value Although several courses prepare students to be digital citizens or use ICT to enhance the teaching-learning process, millennials are ill prepared to use cutting-edge technologies in an innovative, responsible and critical way in their future professions. The course that was designed is original in that it goes beyond preparing digital citizens to prepare professionals in any domain to use ICT in an informed and responsible way. Moreover, it is a documented, successful example of an undergraduate universal course in a highly important current society dimension. The authors believe that its pedagogical proposal could be transferred to courses dealing with other global issues such as the environment, economy and peace.


Sign in / Sign up

Export Citation Format

Share Document