scholarly journals Identifying Potentially Beneficial Genetic Mutations Associated with Monophyletic Selective Sweep and a Proof-of-Concept Study with Viral Genetic Data

mSystems ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Yuki Furuse

ABSTRACT Genetic mutations play a central role in evolution. For a significantly beneficial mutation, a one-time mutation event suffices for the species to prosper and predominate through the process called “monophyletic selective sweep.” However, existing methods that rely on counting the number of mutation events to detect selection are unable to find such a mutation in selective sweep. We here introduce a method to detect mutations at the single amino acid/nucleotide level that could be responsible for monophyletic selective sweep evolution. The method identifies a genetic signature associated with selective sweep using the population genetic test statistic Tajima’s D. We applied the algorithm to ebolavirus, influenza A virus, and severe acute respiratory syndrome coronavirus 2 to identify known biologically significant mutations and unrecognized mutations associated with potential selective sweep. The method can detect beneficial mutations, possibly leading to discovery of previously unknown biological functions and mechanisms related to those mutations. IMPORTANCE In biology, research on evolution is important to understand the significance of genetic mutation. When there is a significantly beneficial mutation, a population of species with the mutation prospers and predominates, in a process called “selective sweep.” However, there are few methods that can find such a mutation causing selective sweep from genetic data. We here introduce a novel method to detect such mutations. Applying the method to the genomes of ebolavirus, influenza viruses, and the novel coronavirus, we detected known biologically significant mutations and identified mutations the importance of which is previously unrecognized. The method can deepen our understanding of molecular and evolutionary biology.

Viruses ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 321
Author(s):  
Moe Okuda ◽  
Seiya Yamayoshi ◽  
Ryuta Uraki ◽  
Mutsumi Ito ◽  
Taiki Hamabata ◽  
...  

Highly pathogenic avian H5 influenza viruses persist among poultry and wild birds throughout the world. They sometimes cause interspecies transmission between avian and mammalian hosts. H5 viruses possessing the HA of subclade 2.3.4.4, 2.3.2.1, 2.2.1, or 7.2 were detected between 2015 and 2018. To understand the neutralizing epitopes of H5-HA, we characterized 15 human monoclonal antibodies (mAbs) against the HA of H5 viruses, which were obtained from volunteers who received the H5N1 vaccine that contains a subclade 2.2.1 or 2.1.3.2 virus as an antigen. Twelve mAbs were specific for the HA of subclade 2.2.1, two mAbs were specific for the HA of subclade 2.1.3.2, and one mAb was specific for the HA of both. Of the 15 mAbs analyzed, nine, which were specific for the HA of subclade 2.2.1, and shared the VH and VL genes, possessed hemagglutination inhibition and neutralizing activities, whereas the others did not. A single amino acid substitution or insertion at positions 144–147 in antigenic site A conferred resistance against these nine mAbs to the subclade 2.2.1 viruses. The amino acids at positions 144–147 are highly conserved among subclade 2.2.1, but differ from those of other subclades. These results show that the neutralizing epitope including amino acids at positions 144–147 is targeted by human antibodies, and plays a role in the antigenic difference between subclade 2.2.1 and other subclades.


2015 ◽  
Vol 282 (1821) ◽  
pp. 20142878 ◽  
Author(s):  
Oliver G. Pybus ◽  
Andrew J. Tatem ◽  
Philippe Lemey

The frequency and global impact of infectious disease outbreaks, particularly those caused by emerging viruses, demonstrate the need for a better understanding of how spatial ecology and pathogen evolution jointly shape epidemic dynamics. Advances in computational techniques and the increasing availability of genetic and geospatial data are helping to address this problem, particularly when both information sources are combined. Here, we review research at the intersection of evolutionary biology, human geography and epidemiology that is working towards an integrated view of spatial incidence, host mobility and viral genetic diversity. We first discuss how empirical studies have combined viral spatial and genetic data, focusing particularly on the contribution of evolutionary analyses to epidemiology and disease control. Second, we explore the interplay between virus evolution and global dispersal in more depth for two pathogens: human influenza A virus and chikungunya virus. We discuss the opportunities for future research arising from new analyses of human transportation and trade networks, as well as the associated challenges in accessing and sharing relevant spatial and genetic data.


Viruses ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 504 ◽  
Author(s):  
Hi Eun Jung ◽  
Heung Kyu Lee

Influenza viruses cause infectious respiratory disease characterized by fever, myalgia, and congestion, ranging in severity from mild to life-threating. Although enormous efforts have aimed to prevent and treat influenza infections, seasonal and pandemic influenza outbreaks remain a major public health concern. This is largely because influenza viruses rapidly undergo genetic mutations that restrict the long-lasting efficacy of vaccine-induced immune responses and therapeutic regimens. In this review, we discuss the virological features of influenza A viruses and provide an overview of current knowledge of the innate sensing of invading influenza viruses and the protective immune responses in the host.


Author(s):  
Ahmed Magdy Khalil ◽  
Reiko Yoshida ◽  
Tatsunori Masatani ◽  
Ayato Takada ◽  
Makoto Ozawa

Since the influenza pandemic in 2009, the causative agent ‘A(H1N1)pdm09 virus’, has been circulating in both human and swine populations. Although phylogenetic analyses of the haemagglutinin (HA) gene segment have revealed broader genetic diversity of A(H1N1)pdm09-related swine influenza A viruses (swIAVs) compared with human A(H1N1)pdm09 viruses, it remains unclear whether the genetic diversity reflects the antigenic differences in HA. To assess the impact of the diversity of the HA gene of A(H1N1)pdm09-related swIAVs on HA antigenicity, we characterized 12 swIAVs isolated in Japan from 2013 to 2018. We used a ferret antiserum and a panel of anti-HA mouse monoclonal antibodies (mAbs) raised against an early A(H1N1)pdm09 isolate. The neutralization assay with the ferret antiserum revealed that five of the 12 swIAVs were significantly different in their HA antigenicity from the early A(H1N1)pdm09 isolate. The mAbs also showed differential neutralization patterns depending on the swIAV strains. In addition, the single amino acid substitution at position 190 of HA, which was found in one of the five antigenically different swIAVs but not in human isolates, was shown to be one of the critical determinants for the antigenic difference of swIAV HAs. Two potential N-glycosylation sites at amino acid positions 185 and 276 of the HA molecule were identified in two antigenically different swIAVs. These results indicated that the genetic diversity of HA in the A(H1N1)pdm09-related swIAVs is associated with their HA antigenic variation. Our findings highlighted the need for surveillance to monitor the emergence of swIAV antigenic variants with public health importance.


2005 ◽  
Vol 49 (2) ◽  
pp. 556-559 ◽  
Author(s):  
Yacine Abed ◽  
Nathalie Goyette ◽  
Guy Boivin

ABSTRACT The emergence of resistance to amantadine in influenza A viruses has been shown to occur rapidly during treatment as a result of single-amino-acid substitutions at position 26, 27, 30, 31, or 34 within the transmembrane domain of the matrix-(M)-2 protein. In this study, reverse genetics was used to generate and characterize recombinant influenza A (H1N1) viruses harboring L26F, V27A, A30T, S31N, G34E, and V27A/S31N mutations in the M2 gene. In plaque reduction assays, all mutations conferred amantadine resistance, with drug concentrations resulting in reduction of plaque number by 50% (IC50s) 154- to 3,300-fold higher than those seen for the wild type (WT). M2 mutants had no impairment in their replicative capacities in vitro on the basis of plaque size and replication kinetics experiments. In addition, all mutants were at least as virulent as the WT in experimentally infected mice, with the highest mortality rate being obtained with the recombinant harboring a double V27A/S31N mutation. These findings could help explain the frequent emergence and transmission of amantadine-resistant influenza viruses during antiviral pressure in the clinical setting.


mBio ◽  
2018 ◽  
Vol 9 (2) ◽  
Author(s):  
Jeremy C. Jones ◽  
Gyanendra Kumar ◽  
Subrata Barman ◽  
Isabel Najera ◽  
Stephen W. White ◽  
...  

ABSTRACT The clinical severity and annual occurrence of influenza virus epidemics, combined with the availability of just a single class of antivirals to treat infections, underscores the urgent need to develop new anti-influenza drugs. The endonuclease activity within the viral acidic polymerase (PA) protein is an attractive target for drug discovery due to the critical role it plays in viral gene transcription. RO-7 is a next-generation PA endonuclease inhibitor of influenza A and B viruses, but its drug resistance potential is unknown. Through serial passage of influenza A(H1N1) viruses in MDCK cells under selective pressure of RO-7, we identified an I38T substitution within the PA endonuclease domain that conferred in vitro resistance to RO-7 (up to a 287-fold change in 50% effective concentration [EC 50 ]). I38T emerged between 5 and 10 passages, and when introduced into recombinant influenza A(H1N1) viruses, alone conferred RO-7 resistance (up to an 81-fold change in EC 50 ). Cocrystal structures of mutant and wild-type endonuclease domains with RO-7 provided the structural basis of resistance, where a key hydrophobic interaction between RO-7 and the Ile38 side chain is compromised when mutated to the polar threonine. While Ile38 does not have a crucial role in coordinating the endonuclease active site, the switch to threonine does affect the polymerase activity of some viruses and influences RO-7 affinity for the PA N target (i.e., the ≈200-residue N-terminal domain of PA). However, the change does not lead to a complete loss of replication activity in vitro . Our results predict that RO-7-resistant influenza viruses carrying the I38T substitution may emerge under treatment. This should be taken into consideration for clinical surveillance and in refinement of these drugs. IMPORTANCE The effectiveness of antiviral drugs can be severely compromised by the emergence of resistant viruses. Therefore, determination of the mechanisms by which viruses become resistant is critical for drug development and clinical use. RO-7 is a compound that potently inhibits influenza virus replication and belongs to a new class of drugs in late-stage clinical trials for treatment of influenza virus infection. Here we demonstrate that a single amino acid change acquired under prolonged virus exposure to RO-7 renders influenza viruses significantly less susceptible to its inhibitory effects. We have discovered how the mutation can simultaneously interfere with drug activity and still maintain efficient virus replication. These findings have important implications for the development of more effective derivatives of RO-7-like drugs and provide guidance for how to monitor the emergence of resistance.


2005 ◽  
Vol 79 (4) ◽  
pp. 2191-2198 ◽  
Author(s):  
Elena A. Govorkova ◽  
Jerold E. Rehg ◽  
Scott Krauss ◽  
Hui-Ling Yen ◽  
Yi Guan ◽  
...  

ABSTRACT The 2004 outbreaks of H5N1 influenza viruses in Vietnam and Thailand were highly lethal to humans and to poultry; therefore, newly emerging avian influenza A viruses pose a continued threat, not only to avian species but also to humans. We studied the pathogenicity of four human and nine avian H5N1/04 influenza viruses in ferrets (an excellent model for influenza studies). All four human isolates were fatal to intranasally inoculated ferrets. The human isolate A/Vietnam/1203/04 (H5N1) was the most pathogenic isolate; the severity of disease was associated with a broad tissue tropism and high virus titers in multiple organs, including the brain. High fever, weight loss, anorexia, extreme lethargy, and diarrhea were observed. Two avian H5N1/04 isolates were as pathogenic as the human viruses, causing lethal systemic infections in ferrets. Seven of nine H5N1/04 viruses isolated from avian species caused mild infections, with virus replication restricted to the upper respiratory tract. All chicken isolates were nonlethal to ferrets. A sequence analysis revealed polybasic amino acids in the hemagglutinin connecting peptides of all H5N1/04 viruses, indicating that multiple molecular differences in other genes are important for a high level of virulence. Interestingly, the human A/Vietnam/1203/04 isolate had a lysine substitution at position 627 of PB2 and had one to eight amino acid changes in all gene products except that of the M1 gene, unlike the A/chicken/Vietnam/C58/04 and A/quail/Vietnam/36/04 viruses. Our results indicate that viruses that are lethal to mammals are circulating among birds in Asia and suggest that pathogenicity in ferrets, and perhaps humans, reflects a complex combination of different residues rather than a single amino acid difference.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
James D. Allen ◽  
Ted M. Ross

AbstractWhile vaccines remain the best tool for preventing influenza virus infections, they have demonstrated low to moderate effectiveness in recent years. Seasonal influenza vaccines typically consist of wild-type influenza A and B viruses that are limited in their ability to elicit protective immune responses against co-circulating influenza virus variant strains. Improved influenza virus vaccines need to elicit protective immune responses against multiple influenza virus drift variants within each season. Broadly reactive vaccine candidates potentially provide a solution to this problem, but their efficacy may begin to wane as influenza viruses naturally mutate through processes that mediates drift. Thus, it is necessary to develop a method that commercial vaccine manufacturers can use to update broadly reactive vaccine antigens to better protect against future and currently circulating viral variants. Building upon the COBRA technology, nine next-generation H3N2 influenza hemagglutinin (HA) vaccines were designed using a next generation algorithm and design methodology. These next-generation broadly reactive COBRA H3 HA vaccines were superior to wild-type HA vaccines at eliciting antibodies with high HAI activity against a panel of historical and co-circulating H3N2 influenza viruses isolated over the last 15 years, as well as the ability to neutralize future emerging H3N2 isolates.


Author(s):  
Emily S. Bailey ◽  
Xinye Wang ◽  
Mai-juan Ma ◽  
Guo-lin Wang ◽  
Gregory C. Gray

AbstractInfluenza viruses are an important cause of disease in both humans and animals, and their detection and characterization can take weeks. In this study, we sought to compare classical virology techniques with a new rapid microarray method for the detection and characterization of a very diverse, panel of animal, environmental, and human clinical or field specimens that were molecularly positive for influenza A alone (n = 111), influenza B alone (n = 3), both viruses (n = 13), or influenza negative (n = 2) viruses. All influenza virus positive samples in this study were first subtyped by traditional laboratory methods, and later evaluated using the FluChip-8G Insight Assay (InDevR Inc. Boulder, CO) in laboratories at Duke University (USA) or at Duke Kunshan University (China). The FluChip-8G Insight multiplexed assay agreed with classical virologic techniques 59 (54.1%) of 109 influenza A-positive, 3 (100%) of the 3 influenza B-positive, 0 (0%) of 10 both influenza A- and B-positive samples, 75% of 24 environmental samples including those positive for H1, H3, H7, H9, N1, and N9 strains, and 80% of 22 avian influenza samples. It had difficulty with avian N6 types and swine H3 and N2 influenza specimens. The FluChip-8G Insight assay performed well with most human, environmental, and animal samples, but had some difficulty with samples containing multiple viral strains and with specific animal influenza strains. As classical virology methods are often iterative and can take weeks, the FluChip-8G Insight Assay rapid results (time range 8 to 12 h) offers considerable time savings. As the FluChip-8G analysis algorithm is expected to improve over time with addition of new subtypes and sample matrices, the FluChip-8G Insight Assay has considerable promise for rapid characterization of novel influenza viruses affecting humans or animals.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
David R. McIlwain ◽  
Han Chen ◽  
Maria Apkarian ◽  
Melton Affrime ◽  
Bonnie Bock ◽  
...  

Abstract Background Influenza places a significant burden on global health and economics. Individual case management and public health efforts to mitigate the spread of influenza are both strongly impacted by our ability to accurately and efficiently detect influenza viruses in clinical samples. Therefore, it is important to understand the performance characteristics of available assays to detect influenza in a variety of settings. We provide the first report of relative performance between two products marketed to streamline detection of influenza virus in the context of a highly controlled volunteer influenza challenge study. Methods Nasopharyngeal swab samples were collected during a controlled A/California/2009/H1N1 influenza challenge study and analyzed for detection of virus shedding using a validated qRT-PCR (qPCR) assay, a sample-to-answer qRT-PCR device (BioMerieux BioFire FilmArray RP), and an immunoassay based rapid test kit (Quidel QuickVue Influenza A + B Test). Results Relative to qPCR, the sensitivity and specificity of the BioFire assay was 72.1% [63.7–79.5%, 95% confidence interval (CI)] and 93.5% (89.3–96.4%, 95% CI) respectively. For the QuickVue rapid test the sensitivity was 8.5% (4.8–13.7%, 95% CI) and specificity was 99.2% (95.6–100%, 95% CI). Conclusion Relative to qPCR, the BioFire assay had superior performance compared to rapid test in the context of a controlled influenza challenge study.


Sign in / Sign up

Export Citation Format

Share Document