scholarly journals A Peptide from Budding Yeast GAPDH Serves as a Promising Antifungal against Cryptococcus neoformans

Author(s):  
Yang Zhang ◽  
Liyan Zhou ◽  
Yan Liu ◽  
Xi Zhao ◽  
Xianqiang Lian ◽  
...  

Cryptococcus neoformans and Cryptococcus gattii can cause cryptococcosis, which has a high mortality rate. To treat the disease, amphotericin B and fluconazole are often used in clinic.

Author(s):  
Feng Yang ◽  
Vladimir Gritsenko ◽  
Hui Lu ◽  
Cheng Zhen ◽  
Lu Gao ◽  
...  

Cryptococcosis is a globally distributed invasive fungal infection caused by infections with Cryptococcus neoformans or Cryptococcus gattii . Only three classes of therapeutic drugs are clinically available for treating cryptococcosis: polyenes (amphotericin B), azoles (fluconazole), and pyrimidine analogues (flucytosine).


2012 ◽  
Vol 56 (6) ◽  
pp. 3107-3113 ◽  
Author(s):  
A. Espinel-Ingroff ◽  
A. Chowdhary ◽  
M. Cuenca-Estrella ◽  
A. Fothergill ◽  
J. Fuller ◽  
...  

ABSTRACTClinical breakpoints (CBPs) are not available for theCryptococcus neoformans-Cryptococcus gattiispecies complex. MIC distributions were constructed for the wild type (WT) to establish epidemiologic cutoff values (ECVs) forC. neoformansandC. gattiiversus amphotericin B and flucytosine. A total of 3,590 amphotericin B and 3,045 flucytosine CLSI MICs forC. neoformans(including 1,002 VNI isolates and 8 to 39 VNII, VNIII, and VNIV isolates) and 985 and 853 MICs forC. gattii, respectively (including 42 to 259 VGI, VGII, VGIII, and VGIV isolates), were gathered in 9 to 16 (amphotericin B) and 8 to 13 (flucytosine) laboratories (Europe, United States, Australia, Brazil, Canada, India, and South Africa) and aggregated for the analyses. Additionally, 442 amphotericin B and 313 flucytosine MICs measured by using CLSI-YNB medium instead of CLSI-RPMI medium and 237 Etest amphotericin B MICs forC. neoformanswere evaluated. CLSI-RPMI ECVs for distributions originating in ≥3 laboratories (with the percentages of isolates for which MICs were less than or equal to ECVs given in parentheses) were as follows: for amphotericin B, 0.5 μg/ml forC. neoformansVNI (97.2%) andC. gattiiVGI and VGIIa (99.2 and 97.5%, respectively) and 1 μg/ml forC. neoformans(98.5%) andC. gattiinontyped (100%) and VGII (99.2%) isolates; for flucytosine, 4 μg/ml forC. gattiinontyped (96.4%) and VGI (95.7%) isolates, 8 μg/ml for VNI (96.6%) isolates, and 16 μg/ml forC. neoformansnontyped (98.6%) andC. gattiiVGII (97.1%) isolates. Other molecular types had apparent variations in MIC distributions, but the number of laboratories contributing data was too low to allow us to ascertain that the differences were due to factors other than assay variation. ECVs may aid in the detection of isolates with acquired resistance mechanisms.


mSphere ◽  
2019 ◽  
Vol 4 (5) ◽  
Author(s):  
Suresh Ambati ◽  
Emma C. Ellis ◽  
Jianfeng Lin ◽  
Xiaorong Lin ◽  
Zachary A. Lewis ◽  
...  

ABSTRACT Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus cause life-threatening candidiasis, cryptococcosis, and aspergillosis, resulting in several hundred thousand deaths annually. The patients at the greatest risk of developing these life-threatening invasive fungal infections have weakened immune systems. The vulnerable population is increasing due to rising numbers of immunocompromised individuals as a result of HIV infection or immunosuppressed individuals receiving anticancer therapies and/or stem cell or organ transplants. While patients are treated with antifungals such as amphotericin B, all antifungals have serious limitations due to lack of sufficient fungicidal effect and/or host toxicity. Even with treatment, 1-year survival rates are low. We explored methods of increasing drug effectiveness by designing fungicide-loaded liposomes specifically targeted to fungal cells. Most pathogenic fungi are encased in cell walls and exopolysaccharide matrices rich in mannans. Dectin-2 is a mammalian innate immune membrane receptor that binds as a dimer to mannans and signals fungal infection. We coated amphotericin-loaded liposomes with monomers of Dectin-2’s mannan-binding domain, sDectin-2. sDectin monomers were free to float in the lipid membrane and form dimers that bind mannan substrates. sDectin-2-coated liposomes bound orders of magnitude more efficiently to the extracellular matrices of several developmental stages of C. albicans, C. neoformans, and A. fumigatus than untargeted control liposomes. Dectin-2-coated amphotericin B-loaded liposomes reduced the growth and viability of all three species more than an order of magnitude more efficiently than untargeted control liposomes and dramatically decreased the effective dose. Future efforts focus on examining pan-antifungal targeted liposomal drugs in animal models of fungal diseases. IMPORTANCE Invasive fungal diseases caused by Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus have mortality rates ranging from 10 to 95%. Individual patient costs may exceed $100,000 in the United States. All antifungals in current use have serious limitations due to host toxicity and/or insufficient fungal cell killing that results in recurrent infections. Few new antifungal drugs have been introduced in the last 2 decades. Hence, there is a critical need for improved antifungal therapeutics. By targeting antifungal-loaded liposomes to α-mannans in the extracellular matrices secreted by these fungi, we dramatically reduced the effective dose of drug. Dectin-2-coated liposomes loaded with amphotericin B bound 50- to 150-fold more strongly to C. albicans, C. neoformans, and A. fumigatus than untargeted liposomes and killed these fungi more than an order of magnitude more efficiently. Targeting drug-loaded liposomes specifically to fungal cells has the potential to greatly enhance the efficacy of most antifungal drugs.


2011 ◽  
Vol 55 (6) ◽  
pp. 2606-2611 ◽  
Author(s):  
Nelesh P. Govender ◽  
Jaymati Patel ◽  
Marelize van Wyk ◽  
Tom M. Chiller ◽  
Shawn R. Lockhart ◽  
...  

ABSTRACTCryptococcus neoformansis the most common cause of meningitis among adult South Africans with HIV infection/AIDS. Widespread use of fluconazole for treatment of cryptococcal meningitis and other HIV-associated opportunistic fungal infections in South Africa may lead to the emergence of isolates with reduced fluconazole susceptibility. MIC testing using a reference broth microdilution method was used to determine if isolates with reduced susceptibility to fluconazole or amphotericin B had emerged among cases of incident disease. Incident isolates were tested from two surveillance periods (2002-2003 and 2007-2008) when population-based surveillance was conducted in Gauteng Province, South Africa. These isolates were also tested for susceptibility to flucytosine, itraconazole, voriconazole, and posaconazole. Serially collected isolate pairs from cases at several large South African hospitals were also tested for susceptibility to fluconazole. Of the 487 incident isolates tested, only 3 (0.6%) demonstrated a fluconazole MIC of ≥16 μg/ml; all of these isolates were from 2002-2003. All incident isolates were inhibited by very low concentrations of amphotericin B and exhibited very low MICs to voriconazole and posaconazole. Of 67 cases with serially collected isolate pairs, only 1 case was detected where the isolate collected more than 30 days later had a fluconazole MIC value significantly higher than the MIC of the corresponding incident isolate. Although routine antifungal susceptibility testing of incident isolates is not currently recommended in clinical settings, it is still clearly important for public health to periodically monitor for the emergence of resistance.


2020 ◽  
Vol 69 (6) ◽  
pp. 830-837
Author(s):  
Raimunda Sâmia Nogueira Brilhante ◽  
José Alexandre Telmos Silva ◽  
Géssica dos Santos Araújo ◽  
Vandbergue Santos Pereira ◽  
Wilker Jose Perez Gotay ◽  
...  

Introduction. Cryptococcus species are pathogens commonly associated with cases of meningoencephalitis in individuals who are immunosuppressed due to AIDS. Aim. The aim was to evaluate the effects of the antiretroviral darunavir alone or associated with fluconazole, 5-flucytosine and amphotericin B against planktonic cells and biofilms of Cryptococcus species. Methodology. Susceptibility testing of darunavir and the common antifungals against 12 members of the Cryptococcus neoformans/Cryptococcus gattii species complex was evaluated by broth microdilution. The interaction between darunavir and antifungals against planktonic cells was tested by a checkerboard assay. The effects of darunavir against biofilm metabolic activity and biomass were evaluated by the XTT reduction assay and crystal violet staining, respectively. Results. Darunavir combined with amphotericin B showed a synergistic interaction against planktonic cells. No antagonistic interaction was observed between darunavir and the antifungals used. All Cryptococcus species strains were strong biofilm producers. Darunavir alone reduced biofilm metabolic activity and biomass when added during and after biofilm formation (P<0.05). The combination of darunavir with antifungals caused a significant reduction in biofilm metabolic activity and biomass when compared to darunavir alone (P<0.05). Conclusion. Darunavir presents antifungal activity against planktonic cells of Cryptococcus species and synergism with amphotericin B. In addition, darunavir led to reduced biofilm formation and showed activity against mature biofilms of Cryptococcus species. Activity of the antifungals against mature biofilms was enhanced in the presence of darunavir.


2016 ◽  
Vol 60 (4) ◽  
pp. 2528-2531 ◽  
Author(s):  
Shawn R. Lockhart ◽  
Annette W. Fothergill ◽  
Naureen Iqbal ◽  
Carol B. Bolden ◽  
Nina T. Grossman ◽  
...  

ABSTRACTThein vitroactivities of the novel fungal Cyp51 inhibitor VT-1129 were evaluated against a large panel ofCryptococcus neoformansandCryptococcus gattiiisolates. VT-1129 demonstrated potent activities against bothCryptococcusspecies as demonstrated by low MIC50and MIC90values. ForC. gattii, thein vitropotency was maintained against all genotypes. In addition, significantly lower geometric mean MICs were observed for VT-1129 than for fluconazole againstC. neoformans, including isolates with reduced fluconazole susceptibility.


2019 ◽  
Vol 64 (2) ◽  
Author(s):  
Ren-Yi Lu ◽  
Ting-Jun-Hong Ni ◽  
Jing Wu ◽  
Lan Yan ◽  
Quan-Zhen Lv ◽  
...  

ABSTRACT In the past decades, the incidence of cryptococcosis has increased dramatically, which poses a new threat to human health. However, only a few drugs are available for the treatment of cryptococcosis. Here, we described a leading compound, NT-a9, an analogue of isavuconazole, that showed strong antifungal activities in vitro and in vivo. NT-a9 showed a wide range of activities against several pathogenic fungi in vitro, including Cryptococcus neoformans, Cryptococcus gattii, Candida albicans, Candida krusei, Candida tropicalis, Candida glabrata, and Candida parapsilosis, with MICs ranging from 0.002 to 1 μg/ml. In particular, NT-a9 exhibited excellent efficacy against C. neoformans, with a MIC as low as 0.002 μg/ml. NT-a9 treatment resulted in changes in the sterol contents in C. neoformans, similarly to fluconazole. In addition, NT-a9 possessed relatively low cytotoxicity and a high selectivity index. The in vivo efficacy of NT-a9 was assessed using a murine disseminated-cryptococcosis model. Mice were infected intravenously with 1.8 × 106 CFU of C. neoformans strain H99. In the survival study, NT-a9 significantly prolonged the survival times of mice compared with the survival times of the control group or the isavuconazole-, fluconazole-, or amphotericin B-treated groups. Of note, 4 and 8 mg/kg of body weight of NT-a9 rescued all the mice, with a survival rate of 100%. In the fungal-burden study, NT-a9 also significantly reduced the fungal burdens in brains and lungs, while fluconazole and amphotericin B only reduced the fungal burden in lungs. Taken together, these data suggested that NT-a9 is a promising antifungal candidate for the treatment of cryptococcosis infection.


mBio ◽  
2019 ◽  
Vol 10 (3) ◽  
Author(s):  
R. Lu ◽  
C. Hollingsworth ◽  
J. Qiu ◽  
A. Wang ◽  
E. Hughes ◽  
...  

ABSTRACT Cryptococcus neoformans is an encapsulated yeast responsible for approximately a quarter of a million deaths worldwide annually despite therapy, and upwards of 11% of HIV/AIDS-related deaths, rivaling the impact of tuberculosis and malaria. However, the most effective antifungal agent, amphotericin B, requires intravenous delivery and has significant renal and hematopoietic toxicity, making it difficult to utilize, especially in resource-limited settings. The present studies describe a new nanoparticle crystal encapsulated formulation of amphotericin B known as encochleated amphotericin B (CAmB) that seeks to provide an oral formulation that is low in toxicity and cost. Using a 3-day delayed model of murine cryptococcal meningoencephalitis and a large inoculum of a highly virulent strain of serotype A C. neoformans, CAmB, in combination with flucytosine, was found to have efficacy equivalent to parental amphotericin B deoxycholate with flucytosine and superior to oral fluconazole without untoward toxicity. Transport of fluorescent CAmB particles to brain as well as significant brain levels of amphotericin drug was demonstrated in treated mice, and immunological profiles were similar to those of mice treated with conventional amphotericin B. Additional toxicity studies using a standardized rat model showed negligible toxicity after a 28-day treatment schedule. These studies thus offer the potential for an efficacious oral formulation of a known fungicidal drug against intrathecal cryptococcal disease. IMPORTANCE Cryptococcus neoformans is a significant global fungal pathogen that kills an estimated quarter of a million HIV-infected individuals yearly and has poor outcomes despite therapy. The most effective therapy, amphotericin B, is highly effective in killing the fungus but is available only in highly toxic, intravenous formulations that are unavailable in most of the developing world, where cryptococcal disease in most prevalent. For example, in Ethiopia, reliance on the orally available antifungal fluconazole results in high mortality, even when initiated as preemptive therapy at the time of HIV diagnosis. Thus, alternative agents could result in significant saving of lives. Toward this end, the present work describes the development of a new formulation of amphotericin B (CAmB) that encapsulates the drug as a crystal lipid nanoparticle that facilitates oral absorption and prevents toxicity. Successful oral absorption of the drug was demonstrated in a mouse model that, in combination with the antifungal flucytosine, provided efficacy equal to a parental preparation of amphotericin B plus flucytosine. These studies demonstrate the potential for CAmB in combination with flucytosine to provide an effective oral formulation of a well-known, potent fungicidal drug combination.


2013 ◽  
Vol 81 (4) ◽  
pp. 1100-1113 ◽  
Author(s):  
Kassandre Leongson ◽  
Vincent Cousineau-Côté ◽  
Mathieu Goupil ◽  
Francine Aumont ◽  
Serge Sénéchal ◽  
...  

ABSTRACTCryptococcus neoformansvar.grubiiis the most frequent cause of AIDS-associated cryptococcosis worldwide, whileCryptococcus gattiiusually infects immunocompetent people. To understand the mechanisms which cause differential susceptibility to these cryptococcal species in HIV infection, we established and characterized a model of cryptococcosis in CD4C/HIVMutAtransgenic (Tg) mice expressing gene products of HIV-1 and developing an AIDS-like disease. Tg mice infected intranasally withC. neoformansvar.grubiistrain H99 or C23 consistently displayed reduced survival compared to non-Tg mice at three graded inocula, while shortened survival of Tg mice infected withC. gattiistrain R265 or R272 was restricted to a single high inoculum. HIV-1 transgene expression selectively augmented systemic dissemination to the liver and spleen for strains H99 and C23 but not strains R265 and R272. Histopathologic examination of lungs of Tg mice revealed large numbers of widely scattered H99 cells, with a minimal inflammatory cell response, while in the non-Tg mice H99 was almost completely embedded within extensive mixed inflammatory cell infiltrates. In contrast to H99, R265 was dispersed throughout the lung parenchyma and failed to induce a strong inflammatory response in both Tg and non-Tg mice. HIV-1 transgene expression reduced pulmonary production of CCL2 and CCL5 after infection with H99 or R265, and production of these two chemokines was lower after infection with R265. These results indicate that an altered immune response in these Tg mice markedly enhancesC. neoformansbut notC. gattiiinfection. This model therefore provides a powerful new tool to further investigate the immunopathogenesis of cryptococcosis.


mBio ◽  
2015 ◽  
Vol 6 (6) ◽  
Author(s):  
Charles A. Specht ◽  
Chrono K. Lee ◽  
Haibin Huang ◽  
Donald J. Tipper ◽  
Zu T. Shen ◽  
...  

ABSTRACTA vaccine capable of protecting at-risk persons against infections due toCryptococcus neoformansandCryptococcus gattiicould reduce the substantial global burden of human cryptococcosis. Vaccine development has been hampered though, by lack of knowledge as to which antigens are immunoprotective and the need for an effective vaccine delivery system. We made alkaline extracts from mutant cryptococcal strains that lacked capsule or chitosan. The extracts were then packaged into glucan particles (GPs), which are purifiedSaccharomyces cerevisiaecell walls composed primarily of β-1,3-glucans. Subcutaneous vaccination with the GP-based vaccines provided significant protection against subsequent pulmonary infection with highly virulent strains ofC. neoformansandC. gattii. The alkaline extract derived from the acapsular strain was analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS), and the most abundant proteins were identified. Separation of the alkaline extract by size exclusion chromatography revealed fractions that conferred protection when loaded in GP-based vaccines. Robust Th1- and Th17-biased CD4+T cell recall responses were observed in the lungs of vaccinated and infected mice. Thus, our preclinical studies have indicated promising cryptococcal vaccine candidates in alkaline extracts delivered in GPs. Ongoing studies are directed at identifying the individual components of the extracts that confer protection and thus would be promising candidates for a human vaccine.IMPORTANCEThe encapsulated yeastCryptococcus neoformansand its closely related sister species,Cryptococcus gattii, are major causes of morbidity and mortality, particularly in immunocompromised persons. This study reports on the preclinical development of vaccines to protect at-risk populations from cryptococcosis. Antigens were extracted fromCryptococcusby treatment with an alkaline solution. The extracted antigens were then packaged into glucan particles, which are hollow yeast cell walls composed mainly of β-glucans. The glucan particle-based vaccines elicited robust T cell immune responses and protected mice from otherwise-lethal challenge with virulent strains ofC. neoformansandC. gattii. The technology used for antigen extraction and subsequent loading into the glucan particle delivery system is relatively simple and can be applied to vaccine development against other pathogens.


Sign in / Sign up

Export Citation Format

Share Document