INVESTIGATING BLUE LIGHT INTENSITY AS A NEW PARAMETER FOR TREE RING-BASED GLACIER MASS BALANCE RECONSTRUCTIONS IN ALASKA

2016 ◽  
Author(s):  
Jeff D. Gunderson ◽  
◽  
Gregory Wiles ◽  
N. Wiesenberg
2013 ◽  
Vol 9 (6) ◽  
pp. 2451-2458 ◽  
Author(s):  
J. Duan ◽  
L. Wang ◽  
L. Li ◽  
Y. Sun

Abstract. A large number of glaciers in the Tibetan Plateau (TP) have experienced wastage in recent decades. And the wastage is different from region to region, even from glacier to glacier. A better understanding of long-term glacier variations and their linkage with climate variability requires extending the presently observed records. Here we present the first tree-ring-based glacier mass balance (MB) reconstruction in the TP, performed at the Hailuogou Glacier in southeastern TP during 1868–2007. The reconstructed MB is characterized mainly by ablation over the past 140 yr, and typical melting periods occurred in 1910s–1920s, 1930s–1960s, 1970s–1980s, and the last 20 yr. After the 1900s, only a few short periods (i.e., 1920s–1930s, the 1960s and the late 1980s) were characterized by accumulation. These variations can be validated by the terminus retreat velocity of Hailuogou Glacier and the ice-core accumulation rate in Guliya and respond well to regional and Northern Hemisphere temperature anomaly. In addition, the reconstructed MB is significantly and negatively correlated with August–September all-India monsoon rainfall (AIR) (r1871-2008 = −0.342, p < 0.0001). These results suggest that temperature variability is the dominant factor for the long-term MB variation at the Hailuogou Glacier. Indian summer monsoon precipitation does not affect the MB variation, yet the significant negative correlation between the MB and the AIR implies the positive effect of summer heating of the TP on Indian summer monsoon precipitation.


2005 ◽  
Vol 42 ◽  
pp. 303-310 ◽  
Author(s):  
Peter Jansson ◽  
Hans W. Linderholm

AbstractAssessing climate change and its effects on the cryosphere is important, and individual proxies are commonly used for such assessments. We have investigated the possibility of combining glacier mass balance and tree-ring data to better understand regional climate variability in Scandinavia. There are substantial differences between climate information in mass-balance and tree-ring data. Summer balance (bS) is strongly related to summer temperature, while winter balance (bW) is less readily interpreted in terms of a climate signal. Tree rings are good summer temperature proxies, but due to the complexity of tree growth factors (e.g. the effect of the previous winter’s climate) tree-ring records do not exclusively represent summer temperatures. Combining bS and tree-ring records will not likely yield additional summer climate information. The relationship of mass balance with the Arctic Oscillation is stronger than with the North Atlantic Oscillation, especially for northernmost Sweden, whereas no such correlations were found for tree-ring data. The agreement between bN records from both maritime south-central Norway and continental northernmost Sweden and tree-ring data from Jämtland, in a maritime/continental climate transition zone, suggests possibilities to combine mass-balance and tree-ring data to provide information about climate over the entire year on interannual timescales.


2013 ◽  
Vol 79 (2) ◽  
pp. 123-137 ◽  
Author(s):  
Nathan L. Malcomb ◽  
Gregory C. Wiles

AbstractGlacier mass-balance reconstructions provide a means of placing relatively short observational records into a longer-term context. In western North America, mass-balance records span four to five decades and capture a relatively narrow window of glacial behavior over an interval that was dominated by warming and ablation. We use temperature- and moisture-sensitive tree-ring series to reconstruct annual mass balance for six glaciers in the Pacific Northwest and Alaska. Mass-balance models rely on the climatic sensitivity of tree-ring chronologies and teleconnection patterns in the North Pacific. The reconstructions extend through the mid to latter portions of the Little Ice Age (LIA) and explore the role of climate variability in forcing mass balance across multiple environmental gradients. Synchronous positive mass-balance intervals coincide with regional moraine building and solar minima, whereas differences in LIA glacier behavior are related to synoptic climate forcing. Secular warming in the late 19th century to present corresponds with the only multi-decadal intervals of negative mass balance in all glacier reconstructions. This suggests that contemporary retreat in western North America is unique with respect to the last several centuries and that regional patterns of glacier variability are now dominated by global climate forcing.


2005 ◽  
Vol 42 ◽  
pp. 163-170 ◽  
Author(s):  
Yuriy M. Kononov ◽  
Maria D. Ananicheva ◽  
Ian C. Willis

AbstractOur ultimate objective is to study the mass-balance variations of Polar Ural glaciers during the last millennium. We use mass-balance data for two glaciers between 1957 and 1981, climate data obtained by instrumental observations during the 20th century, and tree-ring data compiled for the last 1000 years. Because there is a high correlation between measured glacier mass-balance and climate variables, we reconstruct glacier mass balance for the 20th century using regression equations. Similarly, we use regression equations relating measured climatic variables to tree-ring widths to reconstruct glacier mass balance for the last millennium. According to our reconstructions, the most extensive period of negative mass balance occurred in the late 10th/early 11th century AD, which corresponds to the Medieval Warm Period. A prolonged period of positive glacier mass balance began after the mid-11th century, a time commonly accepted as the onset of the Little Ice Age. This cooling period has three maxima, the last from the early 17th to mid-19th century. Until the beginning of the 20th century, cumulative mass balance over the last millennium varied between ±8mw.e. However, glacier mass balance in the second half of the 20th century is lower than it has been for the past millennium, and cumulative mass balance is now -10mw.e. Polar Ural glaciers are important indicators of regional climate change and should be incorporated into a worldwide glacier-monitoring programme.


2011 ◽  
Vol 43 (1) ◽  
pp. 56-65 ◽  
Author(s):  
Giovanni Leonelli ◽  
Manuela Pelfini ◽  
Rosanne D'Arrigo ◽  
Wilfried Haeberli ◽  
Paolo Cherubini

2013 ◽  
Vol 9 (4) ◽  
pp. 3663-3680
Author(s):  
J. Duan ◽  
L. Wang ◽  
L. Li ◽  
Y. Sun

Abstract. A large number of glaciers in the Tibetan Plateau (TP) have experienced wastage in recent decades. And the wastage is different from region to region, even from glacier to glacier. A better understanding of long-term glacier variations and their linkage with climate variability requires extending the presently observed records. Here we present the first tree-ring-based glacier mass balance (MB) reconstruction in the TP, performed at the Hailuogou Glacier in southeastern TP during 1865–2007. The reconstructed MB is characterized mainly by ablation over the past 143 yr, and typical melting periods occurs in 1910s–1920s, 1930s–1960s, 1970s–1980s, and the last 20 yr. After the 1900s, only a few short periods (i.e., 1920s–1930s, the 1960s and the late 1980s) is characterized by accumulation. These variations can be validated by the terminus retreat velocity of the Hailuogou Glacier and the ice-core accumulation rate in Guliya and respond well to regional and Northern Hemisphere temperature anomaly. In addition, the reconstructed MB is significantly and negatively correlated with August-September all-Indian monsoon precipitation (AIR) (r1871–2008= −0.342, p < 0.0001). These results suggest that temperature variability is the dominant factor for the long-term MB variation at the Hailuogou Glacier. Indian summer monsoon precipitation doesn't affect the MB variation, yet the significant negative correlation between the MB and the AIR implies the positive effect of summer heating of the TP on Indian summer monsoon precipitation.


Climate ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 126
Author(s):  
Moon Taveirne ◽  
Laura Ekemar ◽  
Berta González Sánchez ◽  
Josefine Axelsson ◽  
Qiong Zhang

Glacier mass balance is heavily influenced by climate, with responses of individual glaciers to various climate parameters varying greatly. In northern Sweden, Rabots Glaciär’s mass balance has decreased since it started being monitored in 1982. To relate Rabots Glaciär’s mass balance to changes in climate, the sensitivity to a range of parameters is computed. Through linear regression of mass balance with temperature, precipitation, humidity, wind speed and incoming radiation the climate sensitivity is established and projections for future summer mass balance are made. Summer mass balance is primarily sensitive to temperature at −0.31 m w.e. per °C change, while winter mass balance is mainly sensitive to precipitation at 0.94 m w.e. per % change. An estimate using summer temperature sensitivity projects a dramatic decrease in summer mass balance to −3.89 m w.e. for the 2091–2100 period under climate scenario RCP8.5. With large increases in temperature anticipated for the next century, more complex modelling studies of the relationship between climate and glacier mass balance is key to understanding the future development of Rabots Glaciär.


2019 ◽  
Vol 13 (9) ◽  
pp. 2361-2383 ◽  
Author(s):  
Chunhai Xu ◽  
Zhongqin Li ◽  
Huilin Li ◽  
Feiteng Wang ◽  
Ping Zhou

Abstract. The direct glaciological method provides in situ observations of annual or seasonal surface mass balance, but can only be implemented through a succession of intensive in situ measurements of field networks of stakes and snow pits. This has contributed to glacier surface mass-balance measurements being sparse and often discontinuous in the Tien Shan. Nevertheless, long-term glacier mass-balance measurements are the basis for understanding climate–glacier interactions and projecting future water availability for glacierized catchments in the Tien Shan. Riegl VZ®-6000 long-range terrestrial laser scanner (TLS), typically using class 3B laser beams, is exceptionally well suited for repeated glacier mapping, and thus determination of annual and seasonal geodetic mass balance. This paper introduces the applied TLS for monitoring summer and annual surface elevation and geodetic mass changes of Urumqi Glacier No. 1 as well as delineating accurate glacier boundaries for 2 consecutive mass-balance years (2015–2017), and discusses the potential of such technology in glaciological applications. Three-dimensional changes of ice and firn–snow bodies and the corresponding densities were considered for the volume-to-mass conversion. The glacier showed pronounced thinning and mass loss for the four investigated periods; glacier-wide geodetic mass balance in the mass-balance year 2015–2016 was slightly more negative than in 2016–2017. Statistical comparison shows that agreement between the glaciological and geodetic mass balances can be considered satisfactory, indicating that the TLS system yields accurate results and has the potential to monitor remote and inaccessible glacier areas where no glaciological measurements are available as the vertical velocity component of the glacier is negligible. For wide applications of the TLS in glaciology, we should use stable scan positions and in-situ-measured densities of snow–firn to establish volume-to-mass conversion.


2010 ◽  
Vol 4 (1) ◽  
pp. 115-128 ◽  
Author(s):  
R. J. Thayyen ◽  
J. T. Gergan

Abstract. A large number of Himalayan glacier catchments are under the influence of humid climate with snowfall in winter (November–April) and south-west monsoon in summer (June–September) dominating the regional hydrology. Such catchments are defined as "Himalayan catchment", where the glacier meltwater contributes to the river flow during the period of annual high flows produced by the monsoon. The winter snow dominated Alpine catchments of the Kashmir and Karakoram region and cold-arid regions of the Ladakh mountain range are the other major glacio-hydrological regimes identified in the region. Factors influencing the river flow variations in a "Himalayan catchment" were studied in a micro-scale glacier catchment in the Garhwal Himalaya, covering an area of 77.8 km2. Three hydrometric stations were established at different altitudes along the Din Gad stream and discharge was monitored during the summer ablation period from 1998 to 2004, with an exception in 2002. These data have been analysed along with winter/summer precipitation, temperature and mass balance data of the Dokriani glacier to study the role of glacier and precipitation in determining runoff variations along the stream continuum from the glacier snout to 2360 m a.s.l. The study shows that the inter-annual runoff variation in a "Himalayan catchment" is linked with precipitation rather than mass balance changes of the glacier. This study also indicates that the warming induced an initial increase of glacier runoff and subsequent decline as suggested by the IPCC (2007) is restricted to the glacier degradation-derived component in a precipitation dominant Himalayan catchment and cannot be translated as river flow response. The preliminary assessment suggests that the "Himalayan catchment" could experience higher river flows and positive glacier mass balance regime together in association with strong monsoon. The important role of glaciers in this precipitation dominant system is to augment stream runoff during the years of low summer discharge. This paper intends to highlight the importance of creating credible knowledge on the Himalayan cryospheric processes to develop a more representative global view on river flow response to cryospheric changes and locally sustainable water resources management strategies.


Sign in / Sign up

Export Citation Format

Share Document