The Influence of a Single Charged Interface Trap on the Subthreshold Drain Current in FinFETs with Different Fin Shapes

2020 ◽  
Vol 46 (5) ◽  
pp. 494-496
Author(s):  
A. E. Abdikarimov
2021 ◽  
Author(s):  
Rishu Chaujar ◽  
Mekonnen Getnet Yirak

Abstract In this work, junctionless double and triple metal gate high-k gate all around nanowire field-effect transistor-based APTES biosensor has been developed to study the impact of ITCs on device sensitivity. The analytical results were authenticated using ‘‘ATLAS-3D’’ device simulation tool. Effect of different interface trap charge on the output characteristics of double and triple metal gate high-k gate all around junctionless NWFET biosensor was studied. Output characteristics, like transconductance, output conductance,drain current, threshold voltage, subthreshold voltage and switching ratio, including APTES biomolecule, have been studied in both devices. 184% improvement has been investigated in shifting threshold voltage in a triple metal gate compared to a double metal gate when APTES biomolecule immobilizes on the nanogap cavity region under negative ITCs. Based on this finding, drain off-current ratio and shifting threshold voltage were considered as sensing metrics when APTES biomolecule immobilizes in the nanogap cavity under negative ITCs which is significant for Alzheimer's disease detection. We signifies a negative ITC has a positive impact on our proposed biosensor device compared to positive and neutral ITCs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yejin Yang ◽  
Young-Soo Park ◽  
Jaemin Son ◽  
Kyoungah Cho ◽  
Sangsig Kim

AbstractIn this study, we examine the electrical characteristics of silicon nanowire feedback field-effect transistors (FBFETs) with interface trap charges between the channel and gate oxide. The band diagram, I–V characteristics, memory window, and operation were analyzed using a commercial technology computer-aided design simulation. In an n-channel FBFET, the memory window narrows (widens) from 5.47 to 3.59 V (9.24 V), as the density of the positive (negative) trap charges increases. In contrast, in the p-channel FBFET, the memory window widens (narrows) from 5.38 to 7.38 V (4.18 V), as the density of the positive (negative) trap charges increases. Moreover, we investigate the difference in the output drain current based on the interface trap charges during the memory operation.


2016 ◽  
Vol 7 ◽  
pp. 1368-1376 ◽  
Author(s):  
Faraz Najam ◽  
Kah Cheong Lau ◽  
Cheng Siong Lim ◽  
Yun Seop Yu ◽  
Michael Loong Peng Tan

A simple to implement model is presented to extract interface trap density of graphene field effect transistors. The presence of interface trap states detrimentally affects the device drain current–gate voltage relationship I ds–V gs. At the moment, there is no analytical method available to extract the interface trap distribution of metal-oxide-graphene field effect transistor (MOGFET) devices. The model presented here extracts the interface trap distribution of MOGFET devices making use of available experimental capacitance–gate voltage C tot–V gs data and a basic set of equations used to define the device physics of MOGFET devices. The model was used to extract the interface trap distribution of 2 experimental devices. Device parameters calculated using the extracted interface trap distribution from the model, including surface potential, interface trap charge and interface trap capacitance compared very well with their respective experimental counterparts. The model enables accurate calculation of the surface potential affected by trap charge. Other models ignore the effect of trap charge and only calculate the ideal surface potential. Such ideal surface potential when used in a surface potential based drain current model will result in an inaccurate prediction of the drain current. Accurate calculation of surface potential that can later be used in drain current model is highlighted as a major advantage of the model.


1985 ◽  
Vol 56 ◽  
Author(s):  
M. TAKIKAWA ◽  
T. OOHORI ◽  
K. KASAI ◽  
J. KOMENO ◽  
A. SHIBATOMI

AbstractBy using a DLTS technique, we measured the drain current transient from a gate bias pulse for a HEMT. Two negative peaks and one positive peak were observed. From the analysis of the spectra, we found that the positive peak was due to the interface trap. The density of the interface trap was determined from a DLTS fitting procedure. The effect of the interface traps on the electrical properties of the heterostructure are discussed.


2010 ◽  
Vol 107 (3) ◽  
pp. 034502 ◽  
Author(s):  
Hiroshi Tsuji ◽  
Yoshinari Kamakura ◽  
Kenji Taniguchi

Sign in / Sign up

Export Citation Format

Share Document