scholarly journals NFIL3 mutations alter immune homeostasis and sensitise for arthritis pathology

2018 ◽  
Vol 78 (3) ◽  
pp. 342-349 ◽  
Author(s):  
Susan Schlenner ◽  
Emanuela Pasciuto ◽  
Vasiliki Lagou ◽  
Oliver Burton ◽  
Teresa Prezzemolo ◽  
...  

ObjectivesNFIL3 is a key immunological transcription factor, with knockout mice studies identifying functional roles in multiple immune cell types. Despite the importance of NFIL3, little is known about its function in humans.MethodsHere, we characterised a kindred of two monozygotic twin girls with juvenile idiopathic arthritis at the genetic and immunological level, using whole exome sequencing, single cell sequencing and flow cytometry. Parallel studies were performed in a mouse model.ResultsThe patients inherited a novel p.M170I in NFIL3 from each of the parents. The mutant form of NFIL3 demonstrated reduced stability in vitro. The potential contribution of this mutation to arthritis susceptibility was demonstrated through a preclinical model, where Nfil3-deficient mice upregulated IL-1β production, with more severe arthritis symptoms on disease induction. Single cell sequencing of patient blood quantified the transcriptional dysfunctions present across the peripheral immune system, converging on IL-1β as a pivotal cytokine.ConclusionsNFIL3 mutation can sensitise for arthritis development, in mice and humans, and rewires the innate immune system for IL-1β over-production.

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A520-A520
Author(s):  
Son Pham ◽  
Tri Le ◽  
Tan Phan ◽  
Minh Pham ◽  
Huy Nguyen ◽  
...  

BackgroundSingle-cell sequencing technology has opened an unprecedented ability to interrogate cancer. It reveals significant insights into the intratumoral heterogeneity, metastasis, therapeutic resistance, which facilitates target discovery and validation in cancer treatment. With rapid advancements in throughput and strategies, a particular immuno-oncology study can produce multi-omics profiles for several thousands of individual cells. This overflow of single-cell data poses formidable challenges, including standardizing data formats across studies, performing reanalysis for individual datasets and meta-analysis.MethodsN/AResultsWe present BioTuring Browser, an interactive platform for accessing and reanalyzing published single-cell omics data. The platform is currently hosting a curated database of more than 10 million cells from 247 projects, covering more than 120 immune cell types and subtypes, and 15 different cancer types. All data are processed and annotated with standardized labels of cell types, diseases, therapeutic responses, etc. to be instantly accessed and explored in a uniform visualization and analytics interface. Based on this massive curated database, BioTuring Browser supports searching similar expression profiles, querying a target across datasets and automatic cell type annotation. The platform supports single-cell RNA-seq, CITE-seq and TCR-seq data. BioTuring Browser is now available for download at www.bioturing.com.ConclusionsN/A


2020 ◽  
Author(s):  
Tatyana Dobreva ◽  
David Brown ◽  
Jong Hwee Park ◽  
Matt Thomson

AbstractAn individual’s immune system is driven by both genetic and environmental factors that vary over time. To better understand the temporal and inter-individual variability of gene expression within distinct immune cell types, we developed a platform that leverages multiplexed single-cell sequencing and out-of-clinic capillary blood extraction to enable simplified, cost-effective profiling of the human immune system across people and time at single-cell resolution. Using the platform, we detect widespread differences in cell type-specific gene expression between subjects that are stable over multiple days.SummaryIncreasing evidence implicates the immune system in an overwhelming number of diseases, and distinct cell types play specific roles in their pathogenesis.1,2 Studies of peripheral blood have uncovered a wealth of associations between gene expression, environmental factors, disease risk, and therapeutic efficacy.4 For example, in rheumatoid arthritis, multiple mechanistic paths have been found that lead to disease, and gene expression of specific immune cell types can be used as a predictor of therapeutic non-response.12 Furthermore, vaccines, drugs, and chemotherapy have been shown to yield different efficacy based on time of administration, and such findings have been linked to the time-dependence of gene expression in downstream pathways.21,22,23 However, human immune studies of gene expression between individuals and across time remain limited to a few cell types or time points per subject, constraining our understanding of how networks of heterogeneous cells making up each individual’s immune system respond to adverse events and change over time.


2020 ◽  
Vol 11 ◽  
Author(s):  
Tingting Guo ◽  
Weimin Li ◽  
Xuyu Cai

The recent technical and computational advances in single-cell sequencing technologies have significantly broaden our toolkit to study tumor microenvironment (TME) directly from human specimens. The TME is the complex and dynamic ecosystem composed of multiple cell types, including tumor cells, immune cells, stromal cells, endothelial cells, and other non-cellular components such as the extracellular matrix and secreted signaling molecules. The great success on immune checkpoint blockade therapy has highlighted the importance of TME on anti-tumor immunity and has made it a prime target for further immunotherapy strategies. Applications of single-cell transcriptomics on studying TME has yielded unprecedented resolution of the cellular and molecular complexity of the TME, accelerating our understanding of the heterogeneity, plasticity, and complex cross-interaction between different cell types within the TME. In this review, we discuss the recent advances by single-cell sequencing on understanding the diversity of TME and its functional impact on tumor progression and immunotherapy response driven by single-cell sequencing. We primarily focus on the major immune cell types infiltrated in the human TME, including T cells, dendritic cells, and macrophages. We further discuss the limitations of the existing methodologies and the prospects on future studies utilizing single-cell multi-omics technologies. Since immune cells undergo continuous activation and differentiation within the TME in response to various environmental cues, we highlight the importance of integrating multimodal datasets to enable retrospective lineage tracing and epigenetic profiling of the tumor infiltrating immune cells. These novel technologies enable better characterization of the developmental lineages and differentiation states that are critical for the understanding of the underlying mechanisms driving the functional diversity of immune cells within the TME. We envision that with the continued accumulation of single-cell omics datasets, single-cell sequencing will become an indispensable aspect of the immune-oncology experimental toolkit. It will continue to drive the scientific innovations in precision immunotherapy and will be ultimately adopted by routine clinical practice in the foreseeable future.


2021 ◽  
Author(s):  
Lauren E Fuess ◽  
Daniel I Bolnick

Pathogenic infection is an important driver of many ecological processes. Furthermore, variability in immune function is an important driver of differential infection outcomes. New evidence would suggest that immune variation extends to broad cellular structure of immune systems. However, variability at such broad levels is traditionally difficult to detect in non-model systems. Here we leverage single cell transcriptomic approaches to document signatures of microevolution of immune system structure in a natural system, the three-spined stickleback (Gasterosteus aculeatus). We sampled nine adult fish from three populations with variability in resistance to a cestode parasite, Schistocephalus solidus, to create the first comprehensive immune cell atlas for G. aculeatus. Eight major immune cell types, corresponding to major vertebrate immune cells, were identified. We were also able to document significant variation in both abundance and expression profiles of the individual immune cell types, among the three populations of fish. This variability may contribute to observed variability in parasite susceptibility. Finally, we demonstrate that identified cell type markers can be used to reinterpret traditional transcriptomic data. Combined our study demonstrates the power of single cell sequencing to not only document evolutionary phenomena (i.e. microevolution of immune cells), but also increase the power of traditional transcriptomic datasets.


2021 ◽  
Author(s):  
Congmin Xu ◽  
Junkai Yang ◽  
Astrid Kosters ◽  
Benjamin R Babcock ◽  
Peng Qiu ◽  
...  

Single-cell transcriptomics enables the definition of diverse human immune cell types across multiple tissue and disease contexts. Still, deeper biological understanding requires comprehensive integration of multiple single-cell omics (transcriptomic, proteomic, and cell receptor repertoire). To improve the identification of diverse cell types and the accuracy of cell-type classification in our multi-omics single-cell datasets, we developed SuPERR-seq, a novel analysis workflow to increase the resolution and accuracy of clustering and allow for the discovery and characterization of previously hidden cell subsets. We show that by incorporating information from cell-surface proteins and immunoglobulin transcript counts, we accurately remove cell doublets and prevent widespread cell-type misclassification. This approach uniquely improves the identification of heterogeneous cell types in the human immune system, including a novel subset of antibody-secreting cells in the bone marrow.


Author(s):  
Rasa Elmentaite ◽  
Alexander Ross ◽  
Kylie R. James ◽  
Daniel Ortmann ◽  
Tomas Gomes ◽  
...  

SummaryHuman gut development requires the orchestrated interaction of various differentiating cell types. Here we generate an in-depth single-cell map of the developing human intestine at 6–10 weeks post-conception, a period marked by crypt-villus formation. Our analysis reveals the transcriptional profile of cycling epithelial precursor cells, which are distinct from LGR5-expressing cells. We use computational analyses to show that these cells contribute to differentiated cell subsets directly and indirectly via the generation of LGR5-expressing stem cells and receive signals from the surrounding mesenchymal cells. Furthermore, we draw parallels between the transcriptomes of ex vivo tissues and in vitro fetal organoids, revealing the maturation of organoid cultures in a dish. Lastly, we compare scRNAseq profiles from paediatric Crohn’s disease epithelium alongside matched healthy controls to reveal disease associated changes in epithelial composition. Contrasting these with the fetal profiles reveals re-activation of fetal transcription factors in Crohn’s disease epithelium. Our study provides a unique resource, available at www.gutcellatlas.org, and underscores the importance of unravelling fetal development in understanding disease.


2019 ◽  
Author(s):  
Tanya T. Karagiannis ◽  
John P. Cleary ◽  
Busra Gok ◽  
Nicholas G. Martin ◽  
Elliot C. Nelson ◽  
...  

AbstractChronic opioid usage not only causes addiction behavior through the central nervous system (CNS), but it also modulates the peripheral immune system. However, whether opioid usage positively or negatively impacts the immune system is still controversial. In order to understand the immune modulatory effect of opioids in a systematic and unbiased way, we performed single cell RNA sequencing (scRNA-seq) of peripheral blood mononuclear cells (PBMCs) from opioid-dependent individuals and non-dependent controls. We show that chronic opioid usage evokes widespread suppression of interferon-stimulated genes (ISGs) and antiviral gene program in naive monocytes and upon ex vivo stimulation with the pathogen component lipopolysaccharide (LPS) in multiple innate and adaptive immune cell types. Furthermore, scRNA-seq revealed the same phenomenon with in vitro morphine treatment; after just a short exposure to morphine stimulation, we observed the same suppression of antiviral genes in multiple immune cell types. These findings indicate that both acute and chronic opioid exposure may be harmful to our immune system by suppressing the antiviral gene program, our body’s defense response to potential infection. Our results suggest that further characterization of the immune modulatory effects of opioid use is critical to ensure the safety of clinical opioid usage.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. SCI-30-SCI-30
Author(s):  
Ido Amit

The immune system is a complex, dynamic and plastic network composed of various interacting cell types that are constantly sensing and responding to environmental cues. From very early on, the immunology field has invested great efforts and ingenuity to characterize the various immune cell types and elucidate their functions. However, accumulating evidence indicates that current technologies and classification schemes are limited in their ability to account for the functional heterogeneity of immune processes. Single cell genomics hold the potential to revolutionize the way we characterize complex immune cell assemblies and study their spatial organization, dynamics, clonal distribution, pathways, and crosstalk. This emerging field can greatly affect basic and translational research of the immune system. I will discuss how recent single cell genomic studies are changing our perspective of various immune related pathologies from cancer to neurodegeneration. Finally, I will consider recent and forthcoming technological and analytical advances in single cell genomics and their potential impact on the future of immunology research and immunotherapy. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 12 (529) ◽  
pp. eaaw9522 ◽  
Author(s):  
Danika L. Hill ◽  
Edward J. Carr ◽  
Tobias Rutishauser ◽  
Gemma Moncunill ◽  
Joseph J. Campo ◽  
...  

Children from low- and middle-income countries, where there is a high incidence of infectious disease, have the greatest need for the protection afforded by vaccination, but vaccines often show reduced efficacy in these populations. An improved understanding of how age, infection, nutrition, and genetics influence immune ontogeny and function is key to informing vaccine design for this at-risk population. We sought to identify factors that shape immune development in children under 5 years of age from Tanzania and Mozambique by detailed immunophenotyping of longitudinal blood samples collected during the RTS,S malaria vaccine phase 3 trial. In these cohorts, the composition of the immune system is dynamically transformed during the first years of life, and this was further influenced by geographical location, with some immune cell types showing an altered rate of development in Tanzanian children compared to Dutch children enrolled in the Generation R population–based cohort study. High-titer antibody responses to the RTS,S/AS01E vaccine were associated with an activated immune profile at the time of vaccination, including an increased frequency of antibody-secreting plasmablasts and follicular helper T cells. Anemic children had lower frequencies of recent thymic emigrant T cells, isotype-switched memory B cells, and plasmablasts; modulating iron bioavailability in vitro could recapitulate the B cell defects observed in anemic children. Our findings demonstrate that the composition of the immune system in children varies according to age, geographical location, and anemia status.


Development ◽  
2020 ◽  
Vol 147 (23) ◽  
pp. dev193631
Author(s):  
Nikolaos Konstantinides ◽  
Claude Desplan

ABSTRACTNeuronal replacement therapies rely on the in vitro differentiation of specific cell types from embryonic or induced pluripotent stem cells, or on the direct reprogramming of differentiated adult cells via the expression of transcription factors or signaling molecules. The factors used to induce differentiation or reprogramming are often identified by informed guesses based on differential gene expression or known roles for these factors during development. Moreover, differentiation protocols usually result in partly differentiated cells or the production of a mix of cell types. In this Hypothesis article, we suggest that, to overcome these inefficiencies and improve neuronal differentiation protocols, we need to take into account the developmental history of the desired cell types. Specifically, we present a strategy that uses single-cell sequencing techniques combined with machine learning as a principled method to select a sequence of programming factors that are important not only in adult neurons but also during differentiation.


Sign in / Sign up

Export Citation Format

Share Document