scholarly journals Single cell transcriptomics reveals opioid usage evokes widespread suppression of antiviral gene program

2019 ◽  
Author(s):  
Tanya T. Karagiannis ◽  
John P. Cleary ◽  
Busra Gok ◽  
Nicholas G. Martin ◽  
Elliot C. Nelson ◽  
...  

AbstractChronic opioid usage not only causes addiction behavior through the central nervous system (CNS), but it also modulates the peripheral immune system. However, whether opioid usage positively or negatively impacts the immune system is still controversial. In order to understand the immune modulatory effect of opioids in a systematic and unbiased way, we performed single cell RNA sequencing (scRNA-seq) of peripheral blood mononuclear cells (PBMCs) from opioid-dependent individuals and non-dependent controls. We show that chronic opioid usage evokes widespread suppression of interferon-stimulated genes (ISGs) and antiviral gene program in naive monocytes and upon ex vivo stimulation with the pathogen component lipopolysaccharide (LPS) in multiple innate and adaptive immune cell types. Furthermore, scRNA-seq revealed the same phenomenon with in vitro morphine treatment; after just a short exposure to morphine stimulation, we observed the same suppression of antiviral genes in multiple immune cell types. These findings indicate that both acute and chronic opioid exposure may be harmful to our immune system by suppressing the antiviral gene program, our body’s defense response to potential infection. Our results suggest that further characterization of the immune modulatory effects of opioid use is critical to ensure the safety of clinical opioid usage.

2021 ◽  
Author(s):  
Zhibin Li ◽  
chengcheng Sun ◽  
Fei Wang ◽  
Xiran Wang ◽  
Jiacheng Zhu ◽  
...  

Background: Immune cells play important roles in mediating immune response and host defense against invading pathogens. However, insights into the molecular mechanisms governing circulating immune cell diversity among multiple species are limited. Methods: In this study, we compared the single-cell transcriptomes of 77 957 immune cells from 12 species using single-cell RNA-sequencing (scRNA-seq). Distinct molecular profiles were characterized for different immune cell types, including T cells, B cells, natural killer cells, monocytes, and dendritic cells. Results: The results revealed the heterogeneity and compositions of circulating immune cells among 12 different species. Additionally, we explored the conserved and divergent cellular cross-talks and genetic regulatory networks among vertebrate immune cells. Notably, the ligand and receptor pair VIM-CD44 was highly conserved among the immune cells. Conclusions: This study is the first to provide a comprehensive analysis of the cross-species single-cell atlas for peripheral blood mononuclear cells (PBMCs). This research should advance our understanding of the cellular taxonomy and fundamental functions of PBMCs, with important implications in evolutionary biology, developmental biology, and immune system disorders


2020 ◽  
Author(s):  
Tatyana Dobreva ◽  
David Brown ◽  
Jong Hwee Park ◽  
Matt Thomson

AbstractAn individual’s immune system is driven by both genetic and environmental factors that vary over time. To better understand the temporal and inter-individual variability of gene expression within distinct immune cell types, we developed a platform that leverages multiplexed single-cell sequencing and out-of-clinic capillary blood extraction to enable simplified, cost-effective profiling of the human immune system across people and time at single-cell resolution. Using the platform, we detect widespread differences in cell type-specific gene expression between subjects that are stable over multiple days.SummaryIncreasing evidence implicates the immune system in an overwhelming number of diseases, and distinct cell types play specific roles in their pathogenesis.1,2 Studies of peripheral blood have uncovered a wealth of associations between gene expression, environmental factors, disease risk, and therapeutic efficacy.4 For example, in rheumatoid arthritis, multiple mechanistic paths have been found that lead to disease, and gene expression of specific immune cell types can be used as a predictor of therapeutic non-response.12 Furthermore, vaccines, drugs, and chemotherapy have been shown to yield different efficacy based on time of administration, and such findings have been linked to the time-dependence of gene expression in downstream pathways.21,22,23 However, human immune studies of gene expression between individuals and across time remain limited to a few cell types or time points per subject, constraining our understanding of how networks of heterogeneous cells making up each individual’s immune system respond to adverse events and change over time.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Marlies P Noz ◽  
Siroon Bekkering ◽  
Laszlo Groh ◽  
Tim MJ Nielen ◽  
Evert JP Lamfers ◽  
...  

Atherosclerosis is the major cause of cardiovascular disease (CVD). Monocyte-derived macrophages are the most abundant immune cells in atherosclerotic plaques. In patients with atherosclerotic CVD, leukocytes have a hyperinflammatory phenotype. We hypothesize that immune cell reprogramming in these patients occurs at the level of myeloid progenitors. We included 13 patients with coronary artery disease due to severe atherosclerosis and 13 subjects without atherosclerosis in an exploratory study. Cytokine production capacity after ex vivo stimulation of peripheral blood mononuclear cells (MNCs) and bone marrow MNCs was higher in patients with atherosclerosis. In BM-MNCs this was associated with increased glycolysis and oxidative phosphorylation. The BM composition was skewed towards myelopoiesis and transcriptome analysis of HSC/GMP cell populations revealed enrichment of neutrophil- and monocyte-related pathways. These results show that in patients with atherosclerosis, activation of innate immune cells occurs at the level of myeloid progenitors, which adds exciting opportunities for novel treatment strategies.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 3076-3076
Author(s):  
Shengli Ding ◽  
Zhaohui Wang ◽  
Marcos Negrete Obando ◽  
Grecia rivera Palomino ◽  
Tomer Rotstein ◽  
...  

3076 Background: Preclinical models that can recapitulate patients’ intra-tumoral heterogeneity and microenvironment are crucial for tumor biology research and drug discovery. In particular, the ability to retain immune and other stromal cells in the microenvironment is vital for the development of immuno-oncology assays. However, current patient-derived organoid (PDO) models are largely devoid of immune components. Methods: We first developed an automated microfluidic and membrane platform that can generate tens of thousands of micro-organospheres from resected or biopsied clinical tumor specimens within an hour. We next characterized growth rate and drug response of micro-organospheres. Finally, extensive single-cell RNA-seq profiling were performed on both micro-organospheres and original tumor samples from lung, ovarian, kidney, and breast cancer patients. Results: Micro-organospheres derived from clinical tumor samples preserved all original tumor and stromal cells, including fibroblasts and all immune cell types. Single-cell analysis revealed that unsupervised clustering of tumor and non-tumor cells were identical between original tumors and the derived micro-organospheres. Quantification showed similar cell composition and percentages for all cell types and also preserved functional intra-tumoral heterogeneity.. An automated, end-to-end, high-throughput drug screening pipeline demonstrated that matched peripheral blood mononuclear cells (PBMCs) from the same patient added to micro-organospheres can be used to assess the efficacy of immunotherapy moieties. Conclusions: Micro-organospheres are a rapid and scalable platform to preserve patient tumor microenvironment and heterogeneity. This platform will be useful for precision oncology, drug discovery, and immunotherapy development. Funding sources: NIH U01 CA217514, U01 CA214300, Duke Woo Center for Big Data and Precision Health


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhe Cui ◽  
Ya Cui ◽  
Yan Gao ◽  
Tao Jiang ◽  
Tianyi Zang ◽  
...  

Single-cell Assay Transposase Accessible Chromatin sequencing (scATAC-seq) has been widely used in profiling genome-wide chromatin accessibility in thousands of individual cells. However, compared with single-cell RNA-seq, the peaks of scATAC-seq are much sparser due to the lower copy numbers (diploid in humans) and the inherent missing signals, which makes it more challenging to classify cell type based on specific expressed gene or other canonical markers. Here, we present svmATAC, a support vector machine (SVM)-based method for accurately identifying cell types in scATAC-seq datasets by enhancing peak signal strength and imputing signals through patterns of co-accessibility. We applied svmATAC to several scATAC-seq data from human immune cells, human hematopoietic system cells, and peripheral blood mononuclear cells. The benchmark results showed that svmATAC is free of literature-based markers and robust across datasets in different libraries and platforms. The source code of svmATAC is available at https://github.com/mrcuizhe/svmATAC under the MIT license.


2021 ◽  
Author(s):  
Xinru Qiu ◽  
Jiang Li ◽  
Jeff Bonenfant ◽  
Lukasz Jaroszewski ◽  
Walter Klein ◽  
...  

AbstractSystemic infections, especially in patients with chronic diseases, result in sepsis: an explosive, uncoordinated immune response that can lead to multisystem organ failure with a high mortality rate. Sepsis survivors and non-survivors oftentimes have similar clinical phenotypes or sepsis biomarker expression upon diagnosis, suggesting that the dynamics of sepsis in the critical early stage may have an impact on these opposite outcomes. To investigate this, we designed a within-subject study of patients with systemic gram-negative bacterial sepsis with surviving and fatal outcomes and performed single-cell transcriptomic analyses of peripheral blood mononuclear cells (PBMC) collected during the critical period between sepsis recognition and 6 hours. We observed that the largest sepsis-induced expression changes over time in surviving versus fatal sepsis were in CD14+ monocytes, including gene signatures previously reported for sepsis outcomes. We further identify changes in the metabolic pathways of both monocytes and platelets, the emergence of erythroid precursors, and T cell exhaustion signatures, with the most extreme differences occurring between the non-sepsis control and the sepsis non-survivor. Our single-cell observations are consistent with trends from public datasets but also reveal specific effects in individual immune cell populations, which change within hours. In conclusion, this pilot study provides the first single-cell results with a repeated measures design in sepsis to analyze the temporal changes in the immune cell population behavior in surviving or fatal sepsis. These findings indicate that tracking temporal expression changes in specific cell-types could lead to more accurate predictions of sepsis outcomes. We also identify molecular pathways that could be therapeutically controlled to improve the sepsis trajectory toward better outcomes.Summary sentenceSingle cell transcriptomics of peripheral blood mononuclear cells in surviving and fatal sepsis reveal inflammatory and metabolic pathways that change within hours of sepsis recognition.


2021 ◽  
Author(s):  
Lauren E Fuess ◽  
Daniel I Bolnick

Pathogenic infection is an important driver of many ecological processes. Furthermore, variability in immune function is an important driver of differential infection outcomes. New evidence would suggest that immune variation extends to broad cellular structure of immune systems. However, variability at such broad levels is traditionally difficult to detect in non-model systems. Here we leverage single cell transcriptomic approaches to document signatures of microevolution of immune system structure in a natural system, the three-spined stickleback (Gasterosteus aculeatus). We sampled nine adult fish from three populations with variability in resistance to a cestode parasite, Schistocephalus solidus, to create the first comprehensive immune cell atlas for G. aculeatus. Eight major immune cell types, corresponding to major vertebrate immune cells, were identified. We were also able to document significant variation in both abundance and expression profiles of the individual immune cell types, among the three populations of fish. This variability may contribute to observed variability in parasite susceptibility. Finally, we demonstrate that identified cell type markers can be used to reinterpret traditional transcriptomic data. Combined our study demonstrates the power of single cell sequencing to not only document evolutionary phenomena (i.e. microevolution of immune cells), but also increase the power of traditional transcriptomic datasets.


2021 ◽  
Author(s):  
Congmin Xu ◽  
Junkai Yang ◽  
Astrid Kosters ◽  
Benjamin R Babcock ◽  
Peng Qiu ◽  
...  

Single-cell transcriptomics enables the definition of diverse human immune cell types across multiple tissue and disease contexts. Still, deeper biological understanding requires comprehensive integration of multiple single-cell omics (transcriptomic, proteomic, and cell receptor repertoire). To improve the identification of diverse cell types and the accuracy of cell-type classification in our multi-omics single-cell datasets, we developed SuPERR-seq, a novel analysis workflow to increase the resolution and accuracy of clustering and allow for the discovery and characterization of previously hidden cell subsets. We show that by incorporating information from cell-surface proteins and immunoglobulin transcript counts, we accurately remove cell doublets and prevent widespread cell-type misclassification. This approach uniquely improves the identification of heterogeneous cell types in the human immune system, including a novel subset of antibody-secreting cells in the bone marrow.


2019 ◽  
Author(s):  
Eladio J. Márquez ◽  
Cheng-han Chung ◽  
Radu Marches ◽  
Robert J. Rossi ◽  
Djamel Nehar-Belaid ◽  
...  

AbstractDifferences in immune function and responses contribute to health- and life-span disparities between sexes. However, the role of sex in immune system aging is not well understood. Here, we characterize peripheral blood mononuclear cells from 172 healthy adults 22-93 years of age using ATAC-seq, RNA-seq, and flow-cytometry. These data reveal a shared epigenomic signature of aging including declining naïve T cell and increasing monocyte/cytotoxic cell functions. These changes were greater in magnitude in men and accompanied by a male-specific genomic decline in B-cell specific loci. Age-related epigenomic changes first spike around late-thirties with similar timing and magnitude between sexes, whereas the second spike is earlier and stronger in men. Unexpectedly, genomic differences between sexes increase after age 65, with men having higher innate and pro-inflammatory activity and lower adaptive activity. Impact of age and sex on immune cell genomes can be visualized at https://immune-aging.jax.org to provide insights into future studies.


2020 ◽  
Author(s):  
Gang Xu ◽  
Furong Qi ◽  
Hanjie Li ◽  
Qianting Yang ◽  
Haiyan Wang ◽  
...  

Understanding the mechanism that leads to immune dysfunction induced by SARS-CoV2 virus is crucial to develop treatment for severe COVID-19. Here, using single cell RNA-seq, we characterized the peripheral blood mononuclear cells (PBMC) from uninfected controls and COVID-19 patients, and cells in paired broncho-alveolar lavage fluid (BALF). We found a close association of decreased dendritic cells (DC) and increased monocytes resembling myeloid-derived suppressor cells (MDSC) which correlated with lymphopenia and inflammation in the blood of severe COVID-19 patients. Those MDSC-like monocytes were immune-paralyzed. In contrast, monocyte-macrophages in BALFs of COVID-19 patients produced massive amounts of cytokines and chemokines, but secreted little interferons. The frequencies of peripheral T cells and NK cells were significantly decreased in severe COVID-19 patients, especially for innate-like T and various CD8+ T cell subsets, compared to health controls. In contrast, the proportions of various activated CD4+ T cell subsets, including Th1, Th2 and Th17-like cells were increased and more clonally expanded in severe COVID-19 patients. Patients' peripheral T cells showed no sign of exhaustion or augmented cell death, whereas T cells in BALFs produced higher levels of IFNG, TNF, CCL4 and CCL5 etc. Paired TCR tracking indicated abundant recruitment of peripheral T cells to the patients' lung. Together, this study comprehensively depicts how the immune cell landscape is perturbed in severe COVID-19.


Sign in / Sign up

Export Citation Format

Share Document