scholarly journals OP0246 MIR-214-3P PROTECTS AGAINST OSTEOARTHRITIS BY DIRECTLY TARGETING NF-ĸB PATHWAY

2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 155.2-155
Author(s):  
Y. Cao ◽  
S. Tang ◽  
X. Nie ◽  
W. Han ◽  
Z. Zhu ◽  
...  

Background:Osteoarthritis (OA) is a degenerative disease associated with changes in the articular cartilage and bone, severely affecting patients’ mobility and quality of life. Multiple factors including mechanical stress, metabolic alteration and inflammatory mediators are involved in the complex pathogenesis of OA[1]. Interventions targeting these pathogenic factors may contribute to the treatment of OA. MiRNAs are single strand non-coding small RNAs, which are regulated in chondrogenesis and OA[2,3]. Recent studies demonstrated that miRNAs are involved in the regulation of NF-κB signaling pathway by different mechanisms[4]. These interactions suggest that NF-κB related miRNAs may be used as potential biomarkers and drug therapeutic targets in clinical treatment of OA. However, the relationship between miR-214-3p and NF-κB pathway remains poorly understood in OA.Objectives:This study aimed to test the expression and biological function of miR-214-3p in OA, and explore its mechanism in osteoarthritic chondrocytes.Methods:Articular primary chondrocytes were isolated from human cartilage samples, which were acquired from patients with end-stage knee OA at the time of total knee replacement surgery (n = 27), according to protocols approved by the Ethic Committee of Zhujiang Hospital. Real time PCR (RT-PCR) and in situ hybridization (ISH) were used to detect the expression of miR-214-3p in OA and non-OA cartilage tissues. Interference of miR-214-3p was conducted using inhibitor, while overexpression of miR-214-3p was performed with mimics. Metabolism of extracellular matrix was detected by RT-PCR, western blotting and immunofluorescence in vitro. Flow cytometry were conducted to determine cell apoptosis. A luciferase reporter assay, was used to evaluate the interaction between miR-214-3p and its downstream target. Human chondrocytes were cotransfected with miR-214-3p and the IKBKB-overexpressing plasmid to confirm the interaction between miR-214-3p and NF-ĸB pathway. For in vivo studies, experimental OA was induced in 12-week-old male C57BL/6J mice by destabilization of the medial meniscus (DMM) surgery with miR-214-3p agomir intra-articular (IA) injection (once weekly for 12 days) or by IA injection (once weekly for 12 days) of miR-214-3p antiagomir. Mice were sacrificed 10 weeks after the first IA injection, and subjected to histological analyses.Results:MiR-214-3p was significantly reduced in human OA cartilage. The decreased expression of miR-214-3p in the OA cartilage tissues was directly associated with excessive apoptosis and imbalance between anabolic and catabolic factors of ECM. Mechanistically, we determined that miR-214-3p directly targeted IKBKB/IKK-b and thereby suppressed the activation of NF-ĸB pathway. IKBKB overexpression attenuated the inhibitory effect of miR-214-3p on NF-ĸB pathway. Furthermore, inhibition of miR-214-3p in mice joints triggered spontaneous cartilage loss and OA development, while IA injection of miRNA-214-3p agomir alleviated OA in the DMM mouse model.Conclusion:Our results reveal an important role of miR-214-3p in OA progression. MiR-214-3p was down-regulated while IKBKB was upregulated in OA. MiR-214-3p inhibits the NF-kB signaling pathway and suppresses the progression of OA through targeting IKBKB. Thus, miR-214-3p maybe a therapeutic target for OA.References:[1]Glyn-Jones S, Palmer AJR, Agricola R, Price AJ, Vincent TL, Weinans H, Carr AJ:Osteoarthritis.The Lancet2015,386(9991):376-387.[2]Nugent M:MicroRNAs: exploring new horizons in osteoarthritis.Osteoarthritis and cartilage2016,24(4):573-580.[3]Vicente R, Noel D, Pers YM, Apparailly F, Jorgensen C:Deregulation and therapeutic potential of microRNAs in arthritic diseases.Nature reviews Rheumatology2016,12(4):211-220.[4]Xu B, Li YY, Ma J, Pei FX:Roles of microRNA and signaling pathway in osteoarthritis pathogenesis.Journal of Zhejiang University Science B2016,17(3):200-208.Disclosure of Interests:None declared

Nanomedicine ◽  
2019 ◽  
Vol 14 (17) ◽  
pp. 2339-2353 ◽  
Author(s):  
Wenli Qiu ◽  
Huifeng Zhang ◽  
Xiao Chen ◽  
Lina Song ◽  
Wenjing Cui ◽  
...  

Aim: Biomarker-targeted nanocarrier holds promise for early diagnosis and effective therapy of cancer. Materials & methods: This work successfully designs and evaluates GPC1-targeted, gemcitabine (GEM)-loaded multifunctional gold nanocarrier for near-infrared fluorescence (NIRF)/MRI and targeted chemotherapy against pancreatic cancer in vitro and in vivo. Results: Blood biochemical and histological analyses show that the in vivo toxicity of GPC1-GEM-nanoparticles (NPs) was negligible. Both in vitro and in vivo studies demonstrate that GPC1-GEM-NPs can be used as NIRF/MR contrast agent for pancreatic cancer detection. Treatment of xenografted mice with GPC1-GEM-NPs shows a higher tumor inhibitory effect compared with controls. Conclusion: This novel theranostic nanoplatform provides early diagnostic and effective therapeutic potential for pancreatic cancer.


2020 ◽  
Vol 26 ◽  
Author(s):  
Kondeti Ramudu Shanmugam ◽  
Bhasha Shanmugam ◽  
Gangigunta Venkatasubbaiah ◽  
Sahukari Ravi ◽  
Kesireddy Sathyavelu Reddy

Background : Diabetes is a major public health problem in the world. It affects each and every part of the human body and also leads to organ failure. Hence, great progress made in the field of herbal medicine and diabetic research. Objectives: Our review will focus on the effect of bioactive compounds of medicinal plants which are used to treat diabetes in India and other countries. Methods: Information regarding diabetes, oxidative stress, medicinal plants and bioactive compounds were collected from different search engines like Science direct, Springer, Wiley online library, Taylor and francis, Bentham Science, Pubmed and Google scholar. Data was analyzed and summarized in the review. Results and Conclusion: Anti-diabetic drugs that are in use have many side effects on vital organs like heart, liver, kidney and brain. There is an urgent need for alternative medicine to treat diabetes and their disorders. In India and other countries herbal medicine was used to treat diabetes. Many herbal plants have antidiabetic effects. The plants like ginger, phyllanthus, curcumin, aswagandha, aloe, hibiscus and curcuma showed significant anti-hyperglycemic activities in experimental models and humans. The bioactive compounds like Allicin, azadirachtin, cajanin, curcumin, querceitin, gingerol possesses anti-diabetic, antioxidant and other pharmacological properties. This review focuses on the role of bioactive compounds of medicinal plants in prevention and management of diabetes. Conclusion: Moreover, our review suggests that bioactive compounds have the potential therapeutic potential against diabetes. However, further in vitro and in vivo studies are needed to validate these findings.


2018 ◽  
Vol 15 (6) ◽  
pp. 531-543 ◽  
Author(s):  
Dominik Szwajgier ◽  
Ewa Baranowska-Wojcik ◽  
Kamila Borowiec

Numerous authors have provided evidence regarding the beneficial effects of phenolic acids and their derivatives against Alzheimer's disease (AD). In this review, the role of phenolic acids as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) is discussed, including the structure-activity relationship. In addition, the inhibitory effect of phenolic acids on the formation of amyloid β-peptide (Aβ) fibrils is presented. We also cover the in vitro, ex vivo, and in vivo studies concerning the prevention and treatment of the cognitive enhancement.


Author(s):  
Zhibin Liao ◽  
Hongwei Zhang ◽  
Chen Su ◽  
Furong Liu ◽  
Yachong Liu ◽  
...  

Abstract Background Aberrant expressions of long noncoding RNAs (lncRNAs) have been demonstrated to be related to the progress of HCC. The mechanisms that SNHG14 has participated in the development of HCC are obscure. Methods Quantitative real-time PCR (qRT-PCR) was used to measure the lncRNA, microRNA and mRNA expression level. Cell migration, invasion and proliferation ability were evaluated by transwell and CCK8 assays. The ceRNA regulatory mechanism of SNHG14 was evaluated by RNA immunoprecipitation (RIP) and dual luciferase reporter assay. Tumorigenesis mouse model was used to explore the roles of miR-876-5p in vivo. The protein levels of SSR2 were measured by western blot assay. Results In this study, we demonstrated that SNHG14 was highly expressed in HCC tissues, meanwhile, the elevated expression of SNHG14 predicted poor prognosis in patients with HCC. SNHG14 promoted proliferation and metastasis of HCC cells. We further revealed that SNHG14 functioned as a competing endogenous RNA (ceRNA) for miR-876-5p and that SSR2 was a downstream target of miR-876-5p in HCC. Transwell, CCK8 and animal experiments exhibited miR-876-5p inhibited HCC progression in vitro and in vivo. By conducting rescue experiments, we found the overexpression of SSR2 or knocking down the level of miR-876-5p could reverse the suppressive roles of SNHG14 depletion in HCC. Conclusion SNHG14 promotes HCC progress by acting as a sponge of miR-876-5p to regulate the expression of SSR2 in HCC.


2021 ◽  
Vol 12 (8) ◽  
Author(s):  
Jiewei Lin ◽  
Zhiwei Xu ◽  
Junjie Xie ◽  
Xiaxing Deng ◽  
Lingxi Jiang ◽  
...  

AbstractAPOL1 encodes a secreted high-density lipoprotein, which has been considered as an aberrantly expressed gene in multiple cancers. Nevertheless, the role of APOL1 in the regulatory mechanisms of pancreatic cancer remains unknown and should be explored. We identified APOL1 was abnormally elevated in human pancreatic cancer tissues compared with that in adjacent tissues and was associated with poor prognosis. The effects of APOL1 in PC cell proliferation, cell cycle, and apoptosis was verified via functional in vitro and in vivo experiments. The results showed that knockdown of APOL1 significantly inhibited the proliferation and promoted apoptosis of pancreatic cancer. In addition, we identified APOL1 could be a regulator of NOTCH1 signaling pathway using bioinformatics tools, qRT-PCR, dual-luciferase reporter assay, and western blotting. In summary, APOL1 could function as an oncogene to promote proliferation and inhibit apoptosis through activating NOTCH1 signaling pathway expression in pancreatic cancer; therefore, it may act as a novel therapeutic target for pancreatic cancer.


2020 ◽  
Vol 15 (1) ◽  
pp. 871-883
Author(s):  
Jinshan Zhang ◽  
Dan Rao ◽  
Haibo Ma ◽  
Defeng Kong ◽  
Xiaoming Xu ◽  
...  

AbstractBackgroundOsteosarcoma is a common primary malignant bone cancer. Long noncoding RNA small nucleolar RNA host gene 15 (SNHG15) has been reported to play an oncogenic role in many cancers. Nevertheless, the role of SNHG15 in the doxorubicin (DXR) resistance of osteosarcoma cells has not been fully addressed.MethodsCell Counting Kit-8 assay was conducted to measure the half-maximal inhibitory concentration value of DXR in osteosarcoma cells. Western blotting was carried out to examine the levels of autophagy-related proteins and GDNF family receptor alpha-1 (GFRA1). Quantitative reverse transcription-polymerase chain reaction was performed to determine the levels of SNHG15, miR-381-3p, and GFRA1. The proliferation of osteosarcoma cells was measured by MTT assay. The binding sites between miR-381-3p and SNHG15 or GFRA1 were predicted by Starbase bioinformatics software, and the interaction was confirmed by dual-luciferase reporter assay. Murine xenograft model was established to validate the function of SNHG15 in vivo.ResultsAutophagy inhibitor 3-methyladenine sensitized DXR-resistant osteosarcoma cell lines to DXR. SNHG15 was upregulated in DXR-resistant osteosarcoma tissues and cell lines. SNHG15 knockdown inhibited the proliferation, DXR resistance, and autophagy of osteosarcoma cells. MiR-381-3p was a direct target of SNHG15, and GFRA1 bound to miR-381-3p in osteosarcoma cells. SNHG15 contributed to DXR resistance through the miR-381-3p/GFRA1 axis in vitro. SNHG15 depletion contributed to the inhibitory effect of DXR on osteosarcoma tumor growth through the miR-381-3p/GFRA1 axis in vivo.ConclusionsSNHG15 enhanced the DXR resistance of osteosarcoma cells through elevating the autophagy via targeting the miR-381-3p/GFRA1 axis. Restoration of miR-381-3p expression might be an underlying therapeutic strategy to overcome the DXR resistance of osteosarcoma.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3088
Author(s):  
Mariana Matias ◽  
Jacinta O. Pinho ◽  
Maria João Penetra ◽  
Gonçalo Campos ◽  
Catarina Pinto Reis ◽  
...  

Melanoma is recognized as the most dangerous type of skin cancer, with high mortality and resistance to currently used treatments. To overcome the limitations of the available therapeutic options, the discovery and development of new, more effective, and safer therapies is required. In this review, the different research steps involved in the process of antimelanoma drug evaluation and selection are explored, including information regarding in silico, in vitro, and in vivo experiments, as well as clinical trial phases. Details are given about the most used cell lines and assays to perform both two- and three-dimensional in vitro screening of drug candidates towards melanoma. For in vivo studies, murine models are, undoubtedly, the most widely used for assessing the therapeutic potential of new compounds and to study the underlying mechanisms of action. Here, the main melanoma murine models are described as well as other animal species. A section is dedicated to ongoing clinical studies, demonstrating the wide interest and successful efforts devoted to melanoma therapy, in particular at advanced stages of the disease, and a final section includes some considerations regarding approval for marketing by regulatory agencies. Overall, considerable commitment is being directed to the continuous development of optimized experimental models, important for the understanding of melanoma biology and for the evaluation and validation of novel therapeutic strategies.


2021 ◽  
Author(s):  
Shenshuo Gao ◽  
Zhikai Zhang ◽  
Xubin Wang ◽  
Yan Ma ◽  
Chensheng Li ◽  
...  

Abstract Background: Gastric cancer (GC) is one of the most common malignancies, and more and more evdiences show that the pathogenesis is regulated by various miRNAs.In this study, we investigated the role of miR-875 in GC. Methods:The expression of miR-875-5p was detected in human GC specimens and cell lines by miRNA RT-PCR. The effect of miR-875-5p on GC proliferation was determined by CCK-8 proliferation assay and EDU assay. Migration and invasion were examined by transwell migration and invasion assay and wound healing assay. The interaction between miR-875-5p and its target gene USF2 was verified by a dual luciferase reporter assay. The effects of miR-875-5p in vivo were studied in xenograft nude mice models.Related proteins were detected by Western blot.Results:The results showed that miR-875-5p inhibited the proliferation, migration and invasion of gastric cancer cells in vitro, and inhibited tumorigenesis in vivo. USF2 proved to be a direct target of miR-875-5p. Knockdown of USF2 partially counteracts the effects of miR-875-5p inhibitors.Overexpression of miR-875-5p can inhibit proliferation, migration, and invasion through the TGF-β signaling pathway by down-regulation of USF2 in GC, providing a new research direction for the diagnosis and targeted therapy of GC.Conclusions: MiR-875-5pcan inhibited the progression of GC by directly targeting USF2 and negatively regulating TGF-β signaling pathway.In the future, miR-875-5p is expected to be used as a potential therapeutic target for GC therapy.


2020 ◽  
Author(s):  
Kebin Zheng ◽  
Haipeng Xie ◽  
Xiaosong Wu ◽  
Xichao Wen ◽  
Zhaomu Zeng ◽  
...  

Abstract BackgroundIncreasing studies have revealed that circular RNAs (CircRNAs) make great contribution to regulating tumor progression. Therefore, we intended to explore the expression characteristics, function, and related mechanisms of a novel type of circRNA, PIP5K1A in glioma. MethodsFirstly, RT-PCR was carried out to examine CircPIP5K1A expression in glioma tissues and adjacent normal tissues, and the correlation between CircPIP5K1A level and the clinical pathological indicators of glioma was analyzed. Then, the CircPIP5K1A expression in various glioma cell lines was detected, and a cell model of CircPIP5K1A overexpression and knockdown was constructed. Subsequently, cell proliferation and viability were detected by CCK8 method and BrdU staining, apoptosis was detected by flow cytometry, and cell invasion was examined by Transwell assay. The expression of TCF12, PI3K/AKT pathway apoptotic related proteins (including Caspase3, Bax and Bcl2) and epithelial-mesenchymal transition (EMT) markers (including E-cadherin, Vimentin and N-cadherin) by western blot or RT-PCR. ResultsThe results manifested that CircPIP5K1A was obviously upregulated in glioma tissues (compared with that in normal adjacent tissues), and overexpressed CircPIP5K1A was distinctly related to glioma volume and histopathological grade. Functionally, overexpressing CircPIP5K1A notably elevated the proliferation, invasion, EMT of glioma cells, and inhibited apoptosis both in vivo and in vitro. Besides, CircPIP5K1A also upregulated TCF12 and PI3K/AKT pathway activation. Bioinformatics analysis testified that miR-515-5p was a common target of CircPIP5K1A and TCF12, while dual luciferase reporter assay and RNA immunocoprecipitation (RIP) experiment further confirmed that CircPIP5K1A targeted miR-515-5p, which bound the 3'-untranslated region (UTR) of TCF12. ConclusionsAltogether, the study illustrated that CircPIP5K1A is a potential prognostic marker in glioma and regulates the development of glioma through the modulating miR-515-5p mediated TCF12/PI3K/AKT axis.


Sign in / Sign up

Export Citation Format

Share Document