Role of microRNA-146a in regulation of fibrosis in orbital fibroblasts from patients with Graves’ orbitopathy

2017 ◽  
Vol 102 (3) ◽  
pp. 407-414 ◽  
Author(s):  
Sun Young Jang ◽  
Seong Jun Park ◽  
Min Kyung Chae ◽  
Joon H Lee ◽  
Eun Jig Lee ◽  
...  

AimTo examine the role of microRNA-146a (miR-146a) in the regulation of fibrosis in an in vitro model of Graves’ orbitopathy (GO).MethodsOrbital fat/connective tissues were harvested from patients with GO and non-GO for primary orbital fibroblast cultures. The effects of transforming growth factor-β (TGF-β), a potent cytokine that promotes fibrosis, on miR-146a expression were analysed in GO and non-GO orbital fibroblasts using quantitative real-time PCR. The effects of overexpressed miR-146a on TGF-β-induced fibrotic markers were examined in GO orbital fibroblasts by western blot analysis. Expression ofSma and Mad related family (Smad) 4/tumour necrosis factor receptor-associated factor 6 (TRAF6) after transfection of miR-146a mimics or inhibitors were examined.ResultsTGF-β induced an increase in miR-146a expression in orbital fibroblasts from patients with GO in a time-dependent and concentration-dependent manner. miR-146a mimics further decreased the production of TGF-β-induced fibronectin, collagen Iα and α-smooth muscle actin protein. The Smad4 and TRAF6 protein levels were significantly decreased by miR-146a mimics, compared with control mimics, and significantly increased on inhibition of miR-146a production compared with a control.ConclusionsmiR-146a plays a role as a negative regulator in the production of TGF-β-induced fibrotic markers. Thus, miR-146a may be involved in the regulation of fibrosis in orbital fibroblasts from patients with GO.

2020 ◽  
Vol 105 (6) ◽  
pp. 1906-1917 ◽  
Author(s):  
Yan Guo ◽  
Hai Li ◽  
Xueying Chen ◽  
Huasheng Yang ◽  
Hongyu Guan ◽  
...  

Abstract Context Graves’ orbitopathy (GO) causes infiltrative exophthalmos by inducing excessive proliferation, adipogenesis, and glycosaminoglycan production in orbital fibroblasts (OFs). Interference with OF autophagy is a potential therapy for proptosis. Objectives Here, we aimed to evaluate the effects of chloroquine (CQ) and hydroxychloroquine (HCQ), the autophagy inhibitors commonly used in clinical practice, on OFs. Design/Setting/Participants OFs isolated from patients with GO (GO-OFs) or control individuals (non-GO-OFs) were cultured in proliferation medium (PM) or subjected to differentiation medium. OFs were treated with CQ or HCQ (0, 0.5, 2, and 10 μM), and subsequently examined in vitro. Main Outcome Measures CCK-8, EdU incorporation, and flow cytometry assays were used to assess cellular viability. Adipogenesis was assessed with Western blot analysis, real-time polymerase chain reaction (PCR) , and Oil Red O staining. Hyaluronan production was determined by real-time PCR and enzyme-linked immunosorbent assay. Autophagy flux was detected through red fluorescent protein (RFP)-green fluorescent protein (GFP)-LC3 fluorescence staining and Western blot analyses. Results CQ/HCQ halted proliferation and adipogenesis in GO-OFs in a concentration-dependent manner through blockage of autophagy, phenotypes that were not detected in non-GO-OFs. The inhibitory effect of CQ/HCQ on hyaluronan secretion of GO-OFs was also concentration dependent, mediated by downregulation of hyaluronan synthase 2 rather than hyaluronidases. Moreover, CQ (10 μM) induced GO-OF apoptosis without aggravating oxidative stress. Conclusions The antimalarials CQ/HCQ affect proliferation, adipogenesis, and hyaluronan generation in GO-OFs by inhibiting autophagy, providing evidence that they can be used to treat GO as autophagy inhibitors.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A483-A483
Author(s):  
Yan Guo ◽  
Yanbing Li

Abstract Context: Graves’ orbitopathy (GO) an autoimmune disease in orbit, characterized with proptosis due to excessive proliferation, adipogenesis, fibrosis and hyaluronan secretion of orbital fibroblasts (OFs). OFs is potential to be a target for proptosis. But there are few effective therapies. Objectives: Our present purpose was to evaluate the effects of artemisinin (ARS) and the derivatives dihydroartemisinin (DHA), artesunate (ART) on OFs from GO patients in vitro. Design/Setting/Participants: OFs isolated from patients with GO (n = 10) were allowed to proliferate in the proliferation medium (PM); differentiate into adipocytes in the differentiation medium (DM) or differentiate into myofibroblast stimulated by TGF-β (10ng/ml); or produce hyaluronan stimulated by IL-1β (5ng/ml). Different dosages of ARS and the derivatives were administered in the above conditions. Main Outcome Measures: CCK-8 was used to assessed cell viability of OFs, EdU incorporation and flow cytometry were conducted to assess cellular proliferation. Adipogenesis was determined by Western blot and Oil Red O staining. Hyaluronan was quantified by ELISA. Fibrosis was assessed using Western blot. Results: ARS in concentrations lower than 100 μM, DHA < 20 μM and ART < 10 μM are nontoxic for OFs. Cellular proliferation of GO-OFs was halted by ARS and its derivatives at the maximum nontoxic dosage. ARS and its derivatives exerted an inhibitory action on adipogenesis of OFs in a concentration-dependent manner. Moreover, hyaluronan secretion was obviously decreased by ARS and its derivatives. Intriguingly, fibrosis markers were also decreased by the antimalarias in a dosage-dependent way. Conclusions: We elucidated the efficacies of ARS and its derivatives on proliferation, adipogenesis, fibrosis and hyaluronan production of OFs, supporting that ARS-based antimalarials play potential role as a novel therapy for GO from a perspective of in-vitro study.


2004 ◽  
Vol 286 (5) ◽  
pp. G814-G821 ◽  
Author(s):  
Bi-Guang Tuo ◽  
Jimmy Y. C. Chow ◽  
Kim E. Barrett ◽  
Jon I. Isenberg

PKC has been shown to regulate epithelial Cl- secretion in a variety of models. However, the role of PKC in duodenal mucosal bicarbonate secretion is less clear. We aimed to investigate the role of PKC in regulation of duodenal mucosal bicarbonate secretion. Bicarbonate secretion by murine duodenal mucosa was examined in vitro in Ussing chambers using a pH-stat technique. PKC isoform expression and activity were assessed by Western blotting and in vitro kinase assays, respectively. PMA (an activator of PKC) alone had no effect on duodenal bicarbonate secretion or short-circuit current ( Isc). When PMA and dibutyryl-cAMP (db-cAMP) were added simultaneously, PMA failed to alter db-cAMP-stimulated duodenal bicarbonate secretion or Isc ( P > 0.05). However, a 1-h preincubation with PMA potentiated db-cAMP-stimulated duodenal bicarbonate secretion and Isc in a concentration-dependent manner (from 10-8 to 10-5M) ( P < 0.05). PMA preincubation had no effects on carbachol- or heat-stable toxin-stimulated bicarbonate secretion. Western blot analysis revealed that PKCα, -γ, -ϵ, -θ, -μ, and -ι/λ were expressed in murine duodenal mucosa. Ro 31–8220 (an inhibitor active against PKCϵ, -α, -β, and -γ), but not Gö 6983 (an inhibitor active against PKCα, -γ, -β, and -δ), reversed the potentiating effect of PMA on db-cAMP-stimulated bicarbonate secretion. PMA also time- and concentration-dependently increased the activity of PKCϵ, an effect that was prevented by Ro 31–8220 but not Gö 6983. These results demonstrate that activation of PKC potentiates cAMP-stimulated duodenal bicarbonate secretion, whereas it does not modify basal secretion. The effect of PKC on cAMP-stimulated bicarbonate secretion is mediated by the PKCϵ isoform.


2004 ◽  
Vol 167 (1) ◽  
pp. 75-85 ◽  
Author(s):  
Brenton L. Scott ◽  
Jeffrey S. Van Komen ◽  
Hassan Irshad ◽  
Song Liu ◽  
Kirilee A. Wilson ◽  
...  

Sec1 proteins are critical players in membrane trafficking, yet their precise role remains unknown. We have examined the role of Sec1p in the regulation of post-Golgi secretion in Saccharomyces cerevisiae. Indirect immunofluorescence shows that endogenous Sec1p is found primarily at the bud neck in newly budded cells and in patches broadly distributed within the plasma membrane in unbudded cells. Recombinant Sec1p binds strongly to the t-SNARE complex (Sso1p/Sec9c) as well as to the fully assembled ternary SNARE complex (Sso1p/Sec9c;Snc2p), but also binds weakly to free Sso1p. We used recombinant Sec1p to test Sec1p function using a well-characterized SNARE-mediated membrane fusion assay. The addition of Sec1p to a traditional in vitro fusion assay moderately stimulates fusion; however, when Sec1p is allowed to bind to SNAREs before reconstitution, significantly more Sec1p binding is detected and fusion is stimulated in a concentration-dependent manner. These data strongly argue that Sec1p directly stimulates SNARE-mediated membrane fusion.


2021 ◽  
pp. bjophthalmol-2020-316898
Author(s):  
Sang Joon Jung ◽  
Yeon Jeong Choi ◽  
Tae Kwann Park ◽  
Sang Earn Woo ◽  
Bo-Yeon Kim ◽  
...  

Background/AimsTo investigate the role of Wnt signalling in adipogenesis using an in vitro model of Graves’ orbitopathy (GO).MethodsOrbital fat was obtained from patients with GO and non-GO participants for primary orbital fibroblast (OF) culture. Expression levels of Wnt5a, Wnt10b, β-catenin, phospho-β-catenin and cyclin D1 were compared between GO and non-GO OFs. These expression levels were also determined during adipogenesis of GO and non-GO OFs. The effects of a stimulator and inhibitor of Wnt signalling on adipogenesis of GO and non-GO OFs were investigated.ResultsWestern blotting analysis showed significant reductions in β-catenin and cyclin D1 and significant enhancement of phospho-β-catenin in OFs from patients with GO, compared with OFs from non-GO participants (p<0.05). Expression of Wnt5a, Wnt10b, β-catenin and cyclin D1 in OFs was highest on day 0, and then gradually declined after induction of adipogenic differentiation. The expression levels of PPARγ, C/EBPα and C/EBPβ were reduced in Wnt stimulator-treated OFs in a dose-dependent manner. Oil red O staining confirmed that a stimulator of Wnt inhibited adipogenesis in GO OFs.ConclusionThese results indicate that Wnt signalling inhibits adipogenesis in OFs from patients with GO and non-GO participants. Further studies are required to examine the potential of Wnt signalling as a target for therapeutic strategies.


Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2722
Author(s):  
Ivan V. Maly ◽  
Wilma A. Hofmann

High fat consumption can enhance metastasis and decrease survival in prostate cancer, but the picture remains incomplete on the epidemiological and cell-biological level, impeding progress toward individualized recommendations in the clinic. Recent work has highlighted the role of exosomes secreted by prostate cancer cells in the progression of the disease, particularly in metastatic invasion, and also the utility of targeting these extracellular vesicles for diagnostics, as carriers of disease progression markers. Here, we investigated the question of a potential impact of the chief nutritional saturated fatty acid on the exosome secretion. Palmitic acid decreased the secretion of exosomes in human prostate cancer cells in vitro in a concentration-dependent manner. At the same time, the content of some prospective metastatic markers in the secreted exosomal fraction was also reduced, as was the ability of the cells to invade across extracellular matrix barriers. While by themselves our in vitro results imply that on the cell level, palmitic acid may be beneficial vis-à-vis the course of the disease, they also suggest that, by virtue of the decreased biomarker secretion, palmitic acid has the potential to cause unjustified deprioritization of treatment in obese and lipidemic men.


2020 ◽  
Vol 7 (9) ◽  
pp. 200441
Author(s):  
Thomas Stahnke ◽  
Beata Gajda-Deryło ◽  
Anselm G. Jünemann ◽  
Oliver Stachs ◽  
Katharina A. Sterenczak ◽  
...  

To elucidate and to inhibit post-surgical fibrotic processes after trabeculectomy in glaucoma therapy, we measured gene expression in a fibrotic cell culture model, based on transforming growth factor TGF-β induction in primary human tenon fibroblasts (hTFs), and used Connectivity Map (CMap) data for drug repositioning. We found that specific molecular mechanisms behind fibrosis are the upregulation of actins, the downregulation of CD34, and the upregulation of inflammatory cytokines such as IL6, IL11 and BMP6 . The macrolide antibiotic Josamycin (JM) reverses these molecular mechanisms according to data from the CMap, and we thus tested JM as an inhibitor of fibrosis. JM was first tested for its toxic effects on hTFs, where it showed no influence on cell viability, but inhibited hTF proliferation in a concentration-dependent manner. We then demonstrated that JM suppresses the synthesis of extracellular matrix (ECM) components. In hTFs stimulated with TGF-β1, JM specifically inhibited α-smooth muslce actin expression, suggesting that it inhibits the transformation of fibroblasts into fibrotic myofibroblasts. In addition, a decrease of components of the ECM such as fibronectin, which is involved in in vivo scarring, was observed. We conclude that JM may be a promising candidate for the treatment of fibrosis after glaucoma filtration surgery or drainage device implantation in vivo .


Reproduction ◽  
2013 ◽  
Vol 146 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Yang Gao ◽  
Haixia Wen ◽  
Chao Wang ◽  
Qinglei Li

Transforming growth factor β (TGFβ) superfamily signaling is essential for female reproduction. Dysregulation of the TGFβ signaling pathway can cause reproductive diseases. SMA and MAD (mothers against decapentaplegic) (SMAD) proteins are downstream signaling transducers of the TGFβ superfamily. SMAD7 is an inhibitory SMAD that regulates TGFβ signalingin vitro. However, the function of SMAD7 in the ovary remains poorly defined. To determine the signaling preference and potential role of SMAD7 in the ovary, we herein examined the expression, regulation, and function of SMAD7 in mouse granulosa cells. We showed that SMAD7 was expressed in granulosa cells and subject to regulation by intraovarian growth factors from the TGFβ superfamily. TGFB1 (TGFβ1), bone morphogenetic protein 4, and oocyte-derived growth differentiation factor 9 (GDF9) were capable of inducingSmad7expression, suggesting a modulatory role of SMAD7 in a negative feedback loop. Using a small interfering RNA approach, we further demonstrated that SMAD7 was a negative regulator of TGFB1. Moreover, we revealed a link between SMAD7 and GDF9-mediated oocyte paracrine signaling, an essential component of oocyte–granulosa cell communication and folliculogenesis. Collectively, our results suggest that SMAD7 may function during follicular development via preferentially antagonizing and/or fine-tuning essential TGFβ superfamily signaling, which is involved in the regulation of oocyte–somatic cell interaction and granulosa cell function.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 145-145
Author(s):  
Hanan Abdel-Monem ◽  
Swapan Kumar Dasgupta ◽  
Anhquyen Le ◽  
Anthony Prakasam ◽  
Perumal Thiagarajan

Abstract Abstract 145 The physiological function of β2-glycoprotein I is unclear and several studies suggest a role in the clearance of anionic phospholipid containing membranes. Anionic phospholipid containing liposomes are cleared rapidly from the circulation by the reticuloendothelial cells. In rats, uptake of liposomes by Kupffer cells requires that the liposomes bind to plasma proteins. In mice, the clearance of liposomes from the circulation is related to their ability to interact with plasma proteins. β2-glycoprotein I was identified as a major protein associated with rapid clearance of liposomes and pretreating the mice with antiβ2- glycoprotein I antibodies was found to significantly increase the half-life of the liposome. In vitro, β2-glycoprotein I was also shown to promote the phagocytosis of phosphatidylserine containing liposomes and apoptotic tumor cells. In conditions associated with increased microvesicles generation such as disseminated intravascular coagulation, plasma levels of β;2-glycoprotein I was reduced presumably due to its consumption. Antibodies to β2 glycoprotein I are frequently seen in patients with systemic lupus erythematosus and at times, in otherwise normal individuals. A subset of these antibodies prevents the assembly of the prothrombinase and the tenase complexes on phospholipid membrane, leading to the lupus anticoagulant effect. The presence of these antibodies is clinically very significant, as individuals harboring these antibodies are at risk for thromboembolic manifestations. We studied the role of β-glycoprotein I in the clearance of procoagulant platelet microvesicles and the effect of the auto antibodies in the phagocytosis of platelet microvesicles. We labeled β2-glycoprotein I with BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene)-hydrazide and β2-glycoprotein I incorporated 1.8 mole of BODIPY /mole. Labeling of β2-glycoprotein I with BODIPY did not change the binding efficacy of β2-glycoprotein I to cardiolipin as determined by Elisa assay. Binding of BODIPY-β2-glycoprotein I to platelet microvesicles was analyzed by flow cytometry. BODIPY- β2-glycoprotein I bound to phosphatidylserine-expressing platelet microvesicles in a concentration-dependent manner. Binding was inhibited by 50 fold molar excess of unlabeled β2-glycoprotein I, annexin A5 and the phosphatidylserine-binding C1C2 fragment of lactadherin. β2-glycoprotein I also promoted the phagocytosis of platelet microvesicles by THP-1 derived macrophages in vitro at physiological plasma concentrations with a half maximal effect at ∼10 ug/ml. β2-glycoprotein I-mediated phagocytosis was inhibited by annexin V and the C1C2 fragment of lactadherin. Furthermore, immunoaffinity purified β2-glycoprotein I-dependent antiphospholipid antibodies from 5 patients inhibited the phagocytosis in a concentration dependent manner. These studies suggest β2-glycoprotein I binding to phosphatidylserine-expressing procoagulant platelet microvesicles promotes their clearance by macrophages and autoantibodies to β2-glycoprotein I inhibit the process. The predictive value of antiβ-2 glycoprotein I for thrombosis is highly variable but the correlation is stronger in patients with lupus. In lupus, there is impaired clearance of procoagulant apoptotic cells. β2-glycoprotein I may have a significant role in their clearance and antibodies to β2-glycoprotein I may causally related to the thrombosis in these patients by inhibiting the clearance. Disclosures: No relevant conflicts of interest to declare.


2008 ◽  
Vol 295 (5) ◽  
pp. H2113-H2127 ◽  
Author(s):  
Nicholas W. Clavin ◽  
Tomer Avraham ◽  
John Fernandez ◽  
Sanjay V. Daluvoy ◽  
Marc A. Soares ◽  
...  

Although clinical studies have identified scarring/fibrosis as significant risk factors for lymphedema, the mechanisms by which lymphatic repair is impaired remain unknown. Transforming growth factor -β1 (TGF-β1) is a critical regulator of tissue fibrosis/scarring and may therefore also play a role in the regulation of lymphatic regeneration. The purpose of this study was therefore to assess the role of TGF-β1 on scarring/fibrosis and lymphatic regeneration in a mouse tail model. Acute lymphedema was induced in mouse tails by full-thickness skin excision and lymphatic ligation. TGF-β1 expression and scarring were modulated by repairing the wounds with or without a topical collagen gel. Lymphatic function and histological analyses were performed at various time points. Finally, the effects of TGF-β1 on lymphatic endothelial cells (LECs) in vitro were evaluated. As a result, the wound repair with collagen gel significantly reduced the expression of TGF-β1, decreased scarring/fibrosis, and significantly accelerated lymphatic regeneration. The addition of recombinant TGF-β1 to the collagen gel negated these effects. The improved lymphatic regeneration secondary to TGF-β1 inhibition was associated with increased infiltration and proliferation of LECs and macrophages. TGF-β1 caused a dose-dependent significant decrease in cellular proliferation and tubule formation of isolated LECs without changes in the expression of VEGF-C/D. Finally, the increased expression of TGF-β1 during wound repair resulted in lymphatic fibrosis and the coexpression of α-smooth muscle actin and lymphatic vessel endothelial receptor-1 in regenerated lymphatics. In conclusion, the inhibition of TGF-β1 expression significantly accelerates lymphatic regeneration during wound healing. An increased TGF-β1 expression inhibits LEC proliferation and function and promotes lymphatic fibrosis. These findings imply that the clinical interventions that diminish TGF-β1 expression may be useful in promoting more rapid lymphatic regeneration.


Sign in / Sign up

Export Citation Format

Share Document