scholarly journals PO 8565 PREVALENCE AND CLINICAL SIGNIFICANCE OF RESPIRATORY VIRUSES AND BACTERIA DETECTED IN TUBERCULOSIS PATIENTS COMPARED TO HOUSEHOLD CONTACT CONTROLS IN TANZANIA

2019 ◽  
Vol 4 (Suppl 3) ◽  
pp. A54.2-A54
Author(s):  
Francis Mhimbira ◽  
Jerry Hella ◽  
Hellen Hiza ◽  
Emmanuel Mbuba ◽  
Magreth Chiryamkubi ◽  
...  

BackgroundThe study aim is to describe the prevalence of respiratory pathogens in tuberculosis (TB) patients and in their household contact controls, and to determine the clinical significance of respiratory pathogens in TB patients.MethodsWe studied 489 smear-positive adult TB patients and 305 household contact controls without TB with nasopharyngeal swab samples within an ongoing prospective cohort study in Dar es Salaam, Tanzania, between 2013 and 2015. We used multiplex real-time PCR to detect 16 respiratory viruses and seven bacterial pathogens from nasopharyngeal swabs.ResultsThe median age of the study participants was 33 years; 61% (484/794) were men, and 21% (168/794) were HIV-positive. TB patients had a higher prevalence of HIV (28.6%; 140/489) than controls (9.2%; 28/305). Overall prevalence of respiratory viral pathogens was 20.4% (160/794; 95% CI 17.7%–23.3%) and of bacterial pathogens 38.2% (303/794; 95% CI 34.9%–41.6%). TB patients and controls did not differ in the prevalence of respiratory viruses (Odds Ratio [OR] 1.00, 95% CI 0.71–1.44), but respiratory bacteria were less frequently detected in TB patients (OR 0.70, 95% CI 0.53–0.94). TB patients with both respiratory viruses and respiratory bacteria were likely to have more severe disease (adjusted OR [aOR] 1.6, 95% CI 1.1–2.4; p 0.011). TB patients with respiratory viruses tended to have more frequent lung cavitations (aOR 1.6, 95% CI 0.93–2.7; p 0.089).ConclusionRespiratory viruses are common for both TB patients and household controls. TB patients may present with more severe TB disease, particularly when they are co-infected with both bacteria and viruses.

Infection ◽  
2020 ◽  
Vol 48 (6) ◽  
pp. 971-974
Author(s):  
Marcus Panning ◽  
◽  
Julius Wiener ◽  
Kathrin Rothe ◽  
Jochen Schneider ◽  
...  

Abstract Purpose The first SARS-CoV-2 cases in Europe were reported in January 2020. Recently, concern arose on unrecognized infections before this date. For a better understanding of the pandemic, we retrospectively analyzed patient samples for SARS-CoV-2 from the prospective CAPNETZ study cohort. Methods We used nasopharyngeal swab samples from a cohort of well characterized patients with community acquired pneumonia of the CAPNETZ study group, recruited from different geographic regions across Germany, Austria, the Netherlands, and Switzerland between 02nd December 2019 and 28th April 2020. Multiplex real-time RT-PCR for a broad range of respiratory pathogens and SARS-CoV-2 real-time RT-PCR were performed on all samples. Results In our cohort, respiratory pathogens other than SARS-CoV-2 were detected in 21.5% (42/195) of patients with rhinovirus as the most frequently detected pathogen. The detection rate increased to 29.7% (58/195) when SARS-CoV-2 was included. No SARS-CoV-2 positive sample was detected before end of March 2020. Conclusions Respiratory viral pathogens accounted for a considerable number of positive results but no SARS-CoV-2 case was identified before the end of March 2020.


2021 ◽  
Author(s):  
Alexander Y Trick ◽  
Fan-En Chen ◽  
Liben Chen ◽  
Pei-Wei Lee ◽  
Alexander C Hasnain ◽  
...  

The rise of highly transmissible SARS-CoV-2 variants brings new challenges and concerns with vaccine efficacy, diagnostic sensitivity, and public health responses in the fight to end the pandemic. Widespread detection of variant strains will be critical to inform policy decisions to mitigate further spread, and post-pandemic multiplexed screening of respiratory viruses will be necessary to properly manage patients presenting with similar respiratory symptoms. In this work, we have developed a portable, magnetofluidic cartridge platform for automated PCR testing in <30 min. Cartridges were designed for multiplexed detection of SARS-CoV-2 with either distinctive variant mutations or with Influenza A and B. The platform demonstrated a limit of detection down to 2 copies/μL SARS-CoV-2 RNA with successful identification of B.1.1.7 and B.1.351 variants. The multiplexed SARS-CoV-2/Flu assay was validated using archived clinical nasopharyngeal swab eluates (n = 116) with an overall sensitivity/specificity of 98.1%/95.2%, 85.7%/100%, 100%/98.2%, respectively, for SARS-CoV-2, Influenza A, and Influenza B. Further testing with saliva (n = 14) demonstrated successful detection of all SARS-CoV-2 positive samples with no false-positives.


2012 ◽  
Vol 54 (5) ◽  
pp. 249-255 ◽  
Author(s):  
Maria Carolina M. Albuquerque ◽  
Rafael B. Varella ◽  
Norma Santos

The frequency of viral pathogens causing respiratory infections in children in the cities of Rio de Janeiro and Teresópolis was investigated. Nasal swabs from children with acute respiratory illnesses were collected between March 2006 and October 2007. Specimens were tested for viral detection by conventional (RT)-PCR and/or real time PCR. Of the 205 nasal swabs tested, 64 (31.2%) were positive for at least one of the viral pathogens. Single infections were detected in 56 samples, 50 of those were caused by RNA viruses: 33 samples tested positive for rhinovirus, five for influenza A, five for metapneumovirus, four for coronavirus and, three for respiratory syncytial virus. For the DNA viruses, five samples were positive for bocavirus and one for adenovirus. Co-infections with these viruses were detected in eight samples. Our data demonstrate a high frequency of viral respiratory infections, emphasizing the need for a more accurate diagnosis particularly for the emerging respiratory viruses. The fact that the emerging respiratory viruses were present in 9.2% of the tested samples suggests that these viruses could be important respiratory pathogens in the country.


2020 ◽  
Vol 41 (04) ◽  
pp. 579-591
Author(s):  
James M. Walter

AbstractCommunity-acquired pneumonia (CAP) is a major cause of morbidity and mortality worldwide. There is growing appreciation of the burden of noninfluenza viral pathogens in CAP. Due to multiple factors including pneumococcal vaccination programs, declining rates of cigarette smoking, an aging population, and increasingly sensitive diagnostic tests, respiratory viruses are now the most common pathogens detected in CAP, outpacing Streptococcus pneumoniae. Noninfluenza respiratory pathogens are widely accepted as causal pathogens in CAP including in immunocompetent patients. This review provides an overview of five noninfluenza respiratory viral pathogens commonly implicated in CAP pathogenesis: rhinovirus, human metapneumovirus, respiratory syncytial virus, human parainfluenza virus, and human adenoviruses. Nucleic acid amplification testing platforms and their impact on antimicrobial stewardship efforts are also considered.


Children ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 1161
Author(s):  
Ali A. Asseri ◽  
Nasim Khattab ◽  
Dima Ezmigna ◽  
Nabil J. Awadalla ◽  
Cori Daines ◽  
...  

Background: It is necessary to find a non-invasive and accurate procedure to predict persistent bacterial bronchitis (PBB) causative organisms and guide antibiotic therapy. The study objective was to compare the diagnostic accuracy of nasopharyngeal swab cultures with bronchoalveolar lavage (BAL) cultures in children with PBB. Methods: Nasopharyngeal swab and BAL fluid specimens were collected and cultured for bacterial pathogens prospectively from less than five-year-old children undergoing flexible bronchoscopy for chronic wet cough. Results: Of the 59 children included in the study, 26 (44.1%) patients had a positive BAL bacterial culture with neutrophilic inflammation. Prevalence of positive cultures for any of the four common respiratory pathogens implicated in PBB (Moraxella catarrhalis, Streptococcus pneumoniae, Staphylococcus aureus, and Haemophilus influenzae) was significantly higher (p = 0.001) in NP swabs compared to BAL fluids (86.4% and 44.1% of PBB cases, respectively). NP swab cultures for any of the four main bacterial pathogens had 85% (95% CI: 65–96%) and 48% (95% CI: 31–66%) sensitivity and specificity of detecting PBB, respectively. Positive and negative predictive values were 56% (95% CI: 47–65%) and 80% (95% CI: 60–91%), respectively. In conclusion, in children less than 5 years of age with chronic wet cough (PBB-clinical), a negative NP swab result reduces the likelihood of lower airway infection; however, a positive NP swab does not accurately predict the presence of lower airway pathogens. Flexible bronchoscopy should be considered in those with recurrent PBB-clinical or with clinical pointers of central airway anomalies.


Diagnostics ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 9
Author(s):  
Harshad Lade ◽  
Jung-Min Kim ◽  
Yousun Chung ◽  
Minje Han ◽  
Eun-Kyung Mo ◽  
...  

Multiplex nucleic acid amplification assays that simultaneously detect multiple respiratory pathogens in a single nasopharyngeal swab (NPS) specimen are widely used for rapid clinical diagnostics. We evaluated Allplex Respiratory Panel (RP) 1, 2, 3, and the BioFire FilmArray RP assay for detecting respiratory pathogens from NPS specimens. In all, 181 NPS specimens obtained from patients suspected of having respiratory infections during the non-influenza season (August–December 2019) were included. The Allplex RP 1, 2, and 3 detected 154 samples positive for respiratory viruses, whereas the BioFire FilmArray detected viruses in 98 samples. Co-infection with two or more viruses was detected in 41 and 17 NPS specimens by Allplex RP and the BioFire FilmArray RP, respectively. For adenoviruses, Allplex RP 1 detected 31 specimens, compared to 34 by the BioFire FilmArray. In all, 64 NPS specimens were positive for human enterovirus (HEV) and human rhinovirus (HRV) on the Allplex RP, in contrast to 39 HEV/HRV on the BioFire FilmArray. The parainfluenza virus (PIV-1–4) detection rate differed between the two systems. Most discrepant results were observed for NPS specimens with high cycle threshold values obtained by Allplex RP. This study showed concordant performance of the Allplex RP 1, 2, 3, and the BioFire FilmArray RP for the simultaneous detection of multiple respiratory viruses.


Author(s):  
Kyoung Ho Roh ◽  
Yu Kyung Kim ◽  
Shin-Woo Kim ◽  
Eun-Rim Kang ◽  
Yong-Jin Yang ◽  
...  

The detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in upper and lower respiratory specimens and coinfection with other respiratory pathogens in patients with coronavirus disease 2019 (COVID-19) was investigated. Study subjects (N = 342) were retrospectively enrolled after being confirmed as SARS-CoV-2 positive, and their nasopharyngeal swab (NPS), oropharyngeal swab (OPS), and sputum specimens were restored for SARS-CoV-2 retesting and respiratory pathogen detection. The majority of the subjects (96.5%, N = 330) were confirmed as SARS-CoV-2 positive using NPS/OPS specimens. Among the COVID-19 patients (N = 342), 7.9% (N = 27) and 0.9% (N = 3) were coinfected with respiratory viruses and Mycoplasma pneumoniae, respectively, yielding an 8.8% (N = 30) overall respiratory pathogen coinfection rate. Of the respiratory virus coinfection cases (N = 27), 92.6% (N = 25) were coinfected with a single respiratory virus and 7.4% (N = 2) with two viruses (metapneumovirus/adenovirus and rhinovirus/bocavirus). No triple coinfections of other respiratory viruses or bacteria with SARS-CoV-2 were detected. Respiratory viruses coinfected in the patients with COVID-19 were as follows: rhinovirus (N = 7, 2.1%), respiratory syncytial virus A and B (N = 6, 1.8%), non-SARS-CoV-2 coronaviruses (229E, NL63, and OC43, N = 5, 1.5%), metapneumovirus (N = 4, 1.2%), influenza A (N = 3, 0.9%), adenovirus (N = 3, 0.9%), and bocavirus (N = 1, 0.3%). In conclusion, the diagnostic value of utilizing NPS/OPS specimens is excellent, and, as the first report in Korea, coinfection with respiratory pathogens was detected at a rate of 8.8% in patients with COVID-19.


Author(s):  
William B. McCombs ◽  
Cameron E. McCoy

Recent years have brought a reversal in the attitude of the medical profession toward the diagnosis of viral infections. Identification of bacterial pathogens was formerly thought to be faster than identification of viral pathogens. Viral identification was dismissed as being of academic interest or for confirming the presence of an epidemic, because the patient would recover or die before this could be accomplished. In the past 10 years, the goal of virologists has been to present the clinician with a viral identification in a matter of hours. This fast diagnosis has the potential for shortening the patient's hospital stay and preventing the administering of toxic and/or expensive antibiotics of no benefit to the patient.


Author(s):  
Michael Klompas ◽  
Peter B. Imrey ◽  
Pei-Chun Yu ◽  
Chanu Rhee ◽  
Abhishek Deshpande ◽  
...  

Abstract Objective: Viruses are more common than bacteria in patients hospitalized with community-acquired pneumonia. Little is known, however, about the frequency of respiratory viral testing and its associations with antimicrobial utilization. Design: Retrospective cohort study. Setting: The study included 179 US hospitals. Patients: Adults admitted with pneumonia between July 2010 and June 2015. Methods: We assessed the frequency of respiratory virus testing and compared antimicrobial utilization, mortality, length of stay, and costs between tested versus untested patients, and between virus-positive versus virus-negative patients. Results: Among 166,273 patients with pneumonia on admission, 40,787 patients (24.5%) were tested for respiratory viruses, 94.8% were tested for influenza, and 20.7% were tested for other viruses. Viral assays were positive in 5,133 of 40,787 tested patients (12.6%), typically for influenza and rhinovirus. Tested patients were younger and had fewer comorbidities than untested patients, but patients with positive viral assays were older and had more comorbidities than those with negative assays. Blood cultures were positive for bacterial pathogens in 2.7% of patients with positive viral assays versus 5.3% of patients with negative viral tests (P < .001). Antibacterial courses were shorter for virus-positive versus -negative patients overall (mean 5.5 vs 6.4 days; P < .001) but varied by bacterial testing: 8.1 versus 8.0 days (P = .60) if bacterial tests were positive; 5.3 versus 6.1 days (P < .001) if bacterial tests were negative; and 3.3 versus 5.2 days (P < .001) if bacterial tests were not obtained (interaction P < .001). Conclusions: A minority of patients hospitalized with pneumonia were tested for respiratory viruses; only a fraction of potential viral pathogens were assayed; and patients with positive viral tests often received long antibacterial courses.


Sign in / Sign up

Export Citation Format

Share Document