scholarly journals Vaccination against COVID-19 and society’s return to normality in England: a modelling study of impacts of different types of naturally acquired and vaccine-induced immunity

BMJ Open ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. e053507
Author(s):  
Fujian Song ◽  
Max O Bachmann

ObjectivesTo project impacts of mass vaccination against COVID-19, and investigate possible impacts of different types of naturally acquired and vaccine-induced immunity on future dynamics of SARS-CoV-2 transmission from 2021 to 2024 in England.DesignDeterministic, compartmental, discrete-time Susceptible-Exposed-Infectious-Recovered (SEIR) modelling.ParticipantsPopulation in England.InterventionsMass vaccination programmes.Outcome measuresDaily and cumulative number of deaths from COVID-19.ResultsIf vaccine efficacy remains high (85%), the vaccine-induced sterilising immunity lasts ≥182 days, and the reinfectivity is greatly reduced (by ≥60%), annual mass vaccination programmes can prevent further COVID-19 outbreaks in England. Under optimistic scenarios, with annual revaccination programmes, the cumulative number of COVID-19 deaths is estimated to be from 130 000 to 150 000 by the end of 2024. However, the total number of COVID-19 deaths may be up to 431 000 by the end of 2024, under scenarios with compromised vaccine efficacy (62.5%), short duration of natural and vaccine immunity (365/182 days) and small reduction in reinfectivity (30%). Under the assumed scenarios, more frequent revaccinations are associated with smaller total numbers and lower peaks of daily deaths from COVID-19.ConclusionsUnder optimistic scenarios, mass immunisation using efficacious vaccines may enable society safely to return to normality. However, under plausible scenarios with low vaccine efficacy and short durability of immunity, COVID-19 could continue to cause recurrent waves of severe morbidity and mortality despite frequent vaccinations. It is crucial to monitor the vaccination effects in the real world, and to better understand characteristics of naturally acquired and vaccine-induced immunity against SARS-CoV-2.

2021 ◽  
Author(s):  
Fujian Song ◽  
Max O Bachmann

Objectives: To project impacts of mass vaccination against COVID-19, and investigate possible impacts of different types of naturally acquired and vaccine-induced immunity on future dynamics of SARS-CoV-2 transmission from 2021 to 2029 in England. Design: deterministic, discrete-time population dynamic modelling. Participants: Population in England. Interventions: mass vaccination programmes. Outcome measures: daily and cumulative number of deaths from COVID-19. Results: If vaccine efficacy is ≥70%, the vaccine-induced sterilising immunity lasts ≥182 days, and the reinfectivity is greatly reduced (by ≥40%), annual mass vaccination programmes can prevent further COVID-19 outbreaks in England. Under such optimistic scenarios, the cumulative number of COVID-19 deaths is estimated to be from 113,000 to 115,000 by the end of 2029 in England. However, under plausible scenarios with lower vaccine efficacy, shorter durability of immunity, and smaller reduction in reinfectivity, repeated vaccination programmes could not prevent further COVID-19 outbreaks. Conclusions: Under optimistic scenarios, mass immunisation using efficacious vaccines may enable society safely to return to normality. Because of great uncertainty in the impacts of mass vaccination on COVID-19 pandemics, it is crucial to monitor vaccination effects in the real world, and to better understand characteristics of naturally acquired and vaccine induced immunity against SARS-CoV-2.


1989 ◽  
Vol 236 (1284) ◽  
pp. 213-252 ◽  

The epidemiology of pertussis and its prospects for control by mass vaccination in England and Wales are investigated by analyses of longitudinal records on incidence and vaccine uptake, and horizontal data on age-stratified case reports. Mathematical models of the transmission dynamics of the infection that incorporate loss of natural and vaccine-induced immunity plus variable vaccine efficacy are developed, and their predictions compared with observed trends. Analyses of case reports reveal that the individual force of infection is age dependent, with peak transmission in the 5- to 10-year-old age class. A model incorporating this age dependency, along with partial vaccine efficacy and loss of vaccine-induced immunity, generates predicted patterns that best mirror observed trends since mass vaccination was inaugurated in 1957 in England and Wales. Model projections accurately mirror the failure of mass vaccination to increase the inter-epidemic period of the infection (three years) over that pertaining before control. The analysis suggests that this is due to the impact of partial vaccine efficacy. Projected trends to not accurately reflect the low levels of pertussis incidence reported between epidemics in the periods of high vaccine uptake. This is thought to arise from a combination of factors, including loss of natural and vaccine induced immunity, biases in case reporting (where reporting efficiency is positively associated with the incidence of pertussis), and seasonal variations in transmission. Model predictions suggest that the vaccination of 88% of each birth cohort before the age of 1 year will eliminate bacterial transmission, provided the vaccine confers lifelong protection against infection. If vaccine-induced immunity is significantly less than lifelong (or if vaccination fails to protect all its recipients) repeated cohort immunization is predicted to be necessary to eliminate transmission. Future research needs are discussed, and emphasis is placed on the need for more refined data on vaccine efficacy, the duration of natural and vaccine-induced immunity and the incidence of clinical pertussis and subclinical infections (perhaps by the development of reliable serological tests). Future mathematical models will need especially to incorporate seasonality in transmission.


2018 ◽  
Author(s):  
Shivika Narang ◽  
Praphul Chandra ◽  
Shweta Jain ◽  
Narahari Y

The blockchain concept forms the backbone of a new wave technology that promises to be deployed extensively in a wide variety of industrial and societal applications. In this article, we present the scientific foundations and technical strengths of this technology. Our emphasis is on blockchains that go beyond the original application to digital currencies such as bitcoin. We focus on the blockchain data structure and its characteristics; distributed consensus and mining; and different types of blockchain architectures. We conclude with a section on applications in industrial and societal settings, elaborating upon a few applications such as land registry ledger, tamper-proof academic transcripts, crowdfunding, and a supply chain B2B platform. We discuss what we believe are the important challenges in deploying the blockchain technology successfully in real-world settings.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 534
Author(s):  
F. Thomas Bruss

This paper presents two-person games involving optimal stopping. As far as we are aware, the type of problems we study are new. We confine our interest to such games in discrete time. Two players are to chose, with randomised choice-priority, between two games G1 and G2. Each game consists of two parts with well-defined targets. Each part consists of a sequence of random variables which determines when the decisive part of the game will begin. In each game, the horizon is bounded, and if the two parts are not finished within the horizon, the game is lost by definition. Otherwise the decisive part begins, on which each player is entitled to apply their or her strategy to reach the second target. If only one player achieves the two targets, this player is the winner. If both win or both lose, the outcome is seen as “deuce”. We motivate the interest of such problems in the context of real-world problems. A few representative problems are solved in detail. The main objective of this article is to serve as a preliminary manual to guide through possible approaches and to discuss under which circumstances we can obtain solutions, or approximate solutions.


2021 ◽  
pp. 1-21
Author(s):  
Muhammad Shabir ◽  
Rimsha Mushtaq ◽  
Munazza Naz

In this paper, we focus on two main objectives. Firstly, we define some binary and unary operations on N-soft sets and study their algebraic properties. In unary operations, three different types of complements are studied. We prove De Morgan’s laws concerning top complements and for bottom complements for N-soft sets where N is fixed and provide a counterexample to show that De Morgan’s laws do not hold if we take different N. Then, we study different collections of N-soft sets which become idempotent commutative monoids and consequently show, that, these monoids give rise to hemirings of N-soft sets. Some of these hemirings are turned out as lattices. Finally, we show that the collection of all N-soft sets with full parameter set E and collection of all N-soft sets with parameter subset A are Stone Algebras. The second objective is to integrate the well-known technique of TOPSIS and N-soft set-based mathematical models from the real world. We discuss a hybrid model of multi-criteria decision-making combining the TOPSIS and N-soft sets and present an algorithm with implementation on the selection of the best model of laptop.


2019 ◽  
Vol 93 (21) ◽  
Author(s):  
Santosh Dhakal ◽  
Sabra L. Klein

ABSTRACT Influenza is a global public health problem. Current seasonal influenza vaccines have highly variable efficacy, and thus attempts to develop broadly protective universal influenza vaccines with durable protection are under way. While much attention is given to the virus-related factors contributing to inconsistent vaccine responses, host-associated factors are often neglected. Growing evidences suggest that host factors including age, biological sex, pregnancy, and immune history play important roles as modifiers of influenza virus vaccine efficacy. We hypothesize that host genetics, the hormonal milieu, and gut microbiota contribute to host-related differences in influenza virus vaccine efficacy. This review highlights the current insights and future perspectives into host-specific factors that impact influenza vaccine-induced immunity and protection. Consideration of the host factors that affect influenza vaccine-induced immunity might improve influenza vaccines by providing empirical evidence for optimizing or even personalizing vaccine type, dose, and use of adjuvants for current seasonal and future universal influenza vaccines.


2021 ◽  
pp. 1-12
Author(s):  
Lauro Reyes-Cocoletzi ◽  
Ivan Olmos-Pineda ◽  
J. Arturo Olvera-Lopez

The cornerstone to achieve the development of autonomous ground driving with the lowest possible risk of collision in real traffic environments is the movement estimation obstacle. Predicting trajectories of multiple obstacles in dynamic traffic scenarios is a major challenge, especially when different types of obstacles such as vehicles and pedestrians are involved. According to the issues mentioned, in this work a novel method based on Bayesian dynamic networks is proposed to infer the paths of interest objects (IO). Environmental information is obtained through stereo video, the direction vectors of multiple obstacles are computed and the trajectories with the highest probability of occurrence and the possibility of collision are highlighted. The proposed approach was evaluated using test environments considering different road layouts and multiple obstacles in real-world traffic scenarios. A comparison of the results obtained against the ground truth of the paths taken by each detected IO is performed. According to experimental results, the proposed method obtains a prediction rate of 75% for the change of direction taking into consideration the risk of collision. The importance of the proposal is that it does not obviate the risk of collision in contrast with related work.


2019 ◽  
Vol 1 (16) ◽  
pp. 124-130
Author(s):  
E.I. Panchenko

The article is written in line with current research, since the problem of studying Ukrainian realities is of unquestionable interest for several reasons. First, understanding the realities will promote bettermutual understanding of different peoples; and secondly, the definition of optimal means of translating the realities is a definite contribution to the general theory of translation. Different types of real-world classifications are proposed, the difficulties associated with the adequate transfer into the translated text of an entire array of cultural information encoded in the realities contained in the origina text are investigated. Basing on the analysis of numerous translations of literary works, Ukrainian researchers (R. Zorivchak, V. Koptilov, O. Kundzich, O. Cherednichenko, etc.) show ways to overcome linguistic obstacles caused by cultural differences. But, as far as we know, the problem of the translation of Ukrainian realities in the works of T. Shevchenko is not yet exhaustively highlighted. The purpose of this article is to analyze the peculiarities of the use of realities in the work of Taras Shevchenko "Katerina" and their translation into English. We have given an ideographic classification of lexical units - Ukrainian realities in fiction and analyzed such means of their translation as calque, renomination, transcription with explanation, the introduction of neologism, the principle of generic-species replacement, which allows  conveying (approximately) the content of the realities by a broader, general meaning, that is, the reception of generalization. The results of our analysis allow us to make an ideographic classification of Ukrainian realities that are used in fiction, as well as to summarize the prevalence of their means of translation. Prospects for further research are seen in the analysis of certain translation failures in the translation of realities and to offer the best options for their translation.


2021 ◽  
Author(s):  
Amy J. Schuh ◽  
Panayampalli S. Satheshkumar ◽  
Stephanie Dietz ◽  
Lara Bull-Otterson ◽  
Myrna Charles ◽  
...  

Previous vaccine efficacy (VE) studies have estimated neutralizing and binding antibody concentrations that correlate with protection from symptomatic infection; how these estimates compare to those generated in response to SARS-CoV-2 infection is unclear. Here, we assessed quantitative neutralizing and binding antibody concentrations using standardized SARS-CoV-2 assays on 3,067 serum specimens collected during July 27, 2020-August 27, 2020 from COVID-19 unvaccinated persons with detectable anti-SARS-CoV-2 antibodies using qualitative antibody assays. Quantitative neutralizing and binding antibody concentrations were strongly positively correlated (r=0.76, p<0.0001) and were noted to be several fold lower in the unvaccinated study population as compared to published data on concentrations noted 28 days post-vaccination. In this convenience sample, ~88% of neutralizing and ~63-86% of binding antibody concentrations met or exceeded concentrations associated with 70% COVID-19 VE against symptomatic infection from published VE studies; ~30% of neutralizing and 1-14% of binding antibody concentrations met or exceeded concentrations associated with 90% COVID-19 VE. These data support observations of infection-induced immunity and current recommendations for vaccination post infection to maximize protection against symptomatic COVID-19.


Sign in / Sign up

Export Citation Format

Share Document