scholarly journals Opening closed doors: using machine learning to explore factors associated with marital sexual violence in a cross-sectional study from India

BMJ Open ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. e053603
Author(s):  
Lotus McDougal ◽  
Nabamallika Dehingia ◽  
Nandita Bhan ◽  
Abhishek Singh ◽  
Julian McAuley ◽  
...  

ObjectivesSexual violence against women is pervasive in India. Most of this violence is experienced in the context of marriage, and rates of marital sexual violence (MSV) have been relatively stagnant over the past decade. This paper machine learning algorithms paired with qualitative thematic analysis to identify new and potentially modifiable factors influencing MSV in India.Design, setting and participantsThis cross-sectional analysis of secondary data used data from in-person interviews with ever-married women aged 15–49 who responded to gender-based violence questions in the nationally representative 2015–2016 National Family Health Survey (N=66 013), collected between 20 January 2015 and 4 December 2016. Analyses included iterative thematic analysis (L-1 regularised regression followed by iterative qualitative thematic coding of L-2 regularised regression results) and neural network modelling.Outcome measureParticipants reported their experiences of sexual violence perpetrated by their current (or most recent) husband in the previous 12 months. These responses were aggregated into any vs no recent MSV.ResultsNearly 7% of women experienced MSV in the past 12 months. Major themes associated with MSV through iterative thematic analysis included experiences of/exposure to violence, sexual behaviour, decision making and freedom of movement, sociodemographics, access to media, health knowledge, health system interaction, partner control, economic agency, reproductive and maternal history, and health status. A neural network model identified variables that largely corresponded to these themes.ConclusionsThis analysis identified several themes that may be promising avenues to identify and support women experiencing MSV, and to mitigate these traumatic experiences. In particular, amplifying screening activities at health encounters, especially among women who appear to have compromised health or restricted agency, may enable a greater number of women access to essential physical and emotional support services, and merits further consideration.

Risks ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 4 ◽  
Author(s):  
Christopher Blier-Wong ◽  
Hélène Cossette ◽  
Luc Lamontagne ◽  
Etienne Marceau

In the past 25 years, computer scientists and statisticians developed machine learning algorithms capable of modeling highly nonlinear transformations and interactions of input features. While actuaries use GLMs frequently in practice, only in the past few years have they begun studying these newer algorithms to tackle insurance-related tasks. In this work, we aim to review the applications of machine learning to the actuarial science field and present the current state of the art in ratemaking and reserving. We first give an overview of neural networks, then briefly outline applications of machine learning algorithms in actuarial science tasks. Finally, we summarize the future trends of machine learning for the insurance industry.


2020 ◽  
pp. 1-12
Author(s):  
Cao Yanli

The research on the risk pricing of Internet finance online loans not only enriches the theory and methods of online loan pricing, but also helps to improve the level of online loan risk pricing. In order to improve the efficiency of Internet financial supervision, this article builds an Internet financial supervision system based on machine learning algorithms and improved neural network algorithms. Moreover, on the basis of factor analysis and discretization of loan data, this paper selects the relatively mature Logistic regression model to evaluate the credit risk of the borrower and considers the comprehensive management of credit risk and the matching with income. In addition, according to the relevant provisions of the New Basel Agreement on expected losses and economic capital, starting from the relevant factors, this article combines the credit risk assessment results to obtain relevant factors through regional research and conduct empirical analysis. The research results show that the model constructed in this paper has certain reliability.


Author(s):  
E. Yu. Shchetinin

The recognition of human emotions is one of the most relevant and dynamically developing areas of modern speech technologies, and the recognition of emotions in speech (RER) is the most demanded part of them. In this paper, we propose a computer model of emotion recognition based on an ensemble of bidirectional recurrent neural network with LSTM memory cell and deep convolutional neural network ResNet18. In this paper, computer studies of the RAVDESS database containing emotional speech of a person are carried out. RAVDESS-a data set containing 7356 files. Entries contain the following emotions: 0 – neutral, 1 – calm, 2 – happiness, 3 – sadness, 4 – anger, 5 – fear, 6 – disgust, 7 – surprise. In total, the database contains 16 classes (8 emotions divided into male and female) for a total of 1440 samples (speech only). To train machine learning algorithms and deep neural networks to recognize emotions, existing audio recordings must be pre-processed in such a way as to extract the main characteristic features of certain emotions. This was done using Mel-frequency cepstral coefficients, chroma coefficients, as well as the characteristics of the frequency spectrum of audio recordings. In this paper, computer studies of various models of neural networks for emotion recognition are carried out on the example of the data described above. In addition, machine learning algorithms were used for comparative analysis. Thus, the following models were trained during the experiments: logistic regression (LR), classifier based on the support vector machine (SVM), decision tree (DT), random forest (RF), gradient boosting over trees – XGBoost, convolutional neural network CNN, recurrent neural network RNN (ResNet18), as well as an ensemble of convolutional and recurrent networks Stacked CNN-RNN. The results show that neural networks showed much higher accuracy in recognizing and classifying emotions than the machine learning algorithms used. Of the three neural network models presented, the CNN + BLSTM ensemble showed higher accuracy.


2017 ◽  
Vol 71 (1) ◽  
pp. 169-188 ◽  
Author(s):  
E. Shafiee ◽  
M. R. Mosavi ◽  
M. Moazedi

The importance of the Global Positioning System (GPS) and related electronic systems continues to increase in a range of environmental, engineering and navigation applications. However, civilian GPS signals are vulnerable to Radio Frequency (RF) interference. Spoofing is an intentional intervention that aims to force a GPS receiver to acquire and track invalid navigation data. Analysis of spoofing and authentic signal patterns represents the differences as phase, energy and imaginary components of the signal. In this paper, early-late phase, delta, and signal level as the three main features are extracted from the correlation output of the tracking loop. Using these features, spoofing detection can be performed by exploiting conventional machine learning algorithms such as K-Nearest Neighbourhood (KNN) and naive Bayesian classifier. A Neural Network (NN) as a learning machine is a modern computational method for collecting the required knowledge and predicting the output values in complicated systems. This paper presents a new approach for GPS spoofing detection based on multi-layer NN whose inputs are indices of features. Simulation results on a software GPS receiver showed adequate detection accuracy was obtained from NN with a short detection time.


2021 ◽  
Vol 118 (40) ◽  
pp. e2026053118
Author(s):  
Miles Cranmer ◽  
Daniel Tamayo ◽  
Hanno Rein ◽  
Peter Battaglia ◽  
Samuel Hadden ◽  
...  

We introduce a Bayesian neural network model that can accurately predict not only if, but also when a compact planetary system with three or more planets will go unstable. Our model, trained directly from short N-body time series of raw orbital elements, is more than two orders of magnitude more accurate at predicting instability times than analytical estimators, while also reducing the bias of existing machine learning algorithms by nearly a factor of three. Despite being trained on compact resonant and near-resonant three-planet configurations, the model demonstrates robust generalization to both nonresonant and higher multiplicity configurations, in the latter case outperforming models fit to that specific set of integrations. The model computes instability estimates up to 105 times faster than a numerical integrator, and unlike previous efforts provides confidence intervals on its predictions. Our inference model is publicly available in the SPOCK (https://github.com/dtamayo/spock) package, with training code open sourced (https://github.com/MilesCranmer/bnn_chaos_model).


2020 ◽  
Author(s):  
Florian Dupuy ◽  
Olivier Mestre ◽  
Léo Pfitzner

<p>Cloud cover is a crucial information for many applications such as planning land observation missions from space. However, cloud cover remains a challenging variable to forecast, and Numerical Weather Prediction (NWP) models suffer from significant biases, hence justifying the use of statistical post-processing techniques. In our application, the ground truth is a gridded cloud cover product derived from satellite observations over Europe, and predictors are spatial fields of various variables produced by ARPEGE (Météo-France global NWP) at the corresponding lead time.</p><p>In this study, ARPEGE cloud cover is post-processed using a convolutional neural network (CNN). CNN is the most popular machine learning tool to deal with images. In our case, CNN allows to integrate spatial information contained in NWP outputs. We show that a simple U-Net architecture produces significant improvements over Europe. Compared to the raw ARPEGE forecasts, MAE drops from 25.1 % to 17.8 % and RMSE decreases from 37.0 % to 31.6 %. Considering specific needs for earth observation, special interest was put on forecasts with low cloud cover conditions (< 10 %). For this particular nebulosity class, we show that hit rate jumps from 40.6 to 70.7 (which is the order of magnitude of what can be achieved using classical machine learning algorithms such as random forests) while false alarm decreases from 38.2 to 29.9. This is an excellent result, since improving hit rates by means of random forests usually also results in a slight increase of false alarms.</p>


Author(s):  
Tanujit Chakraborty

Decision tree algorithms have been among the most popular algorithms for interpretable (transparent) machine learning since the early 1980s. On the other hand, deep learning methods have boosted the capacity of machine learning algorithms and are now being used for non-trivial applications in various applied domains. But training a fully-connected deep feed-forward network by gradient-descent backpropagation is slow and requires arbitrary choices regarding the number of hidden units and layers. In this paper, we propose near-optimal neural regression trees, intending to make it much faster than deep feed-forward networks and for which it is not essential to specify the number of hidden units in the hidden layers of the neural network in advance. The key idea is to construct a decision tree and then simulate the decision tree with a neural network. This work aims to build a mathematical formulation of neural trees and gain the complementary benefits of both sparse optimal decision trees and neural trees. We propose near-optimal sparse neural trees (NSNT) that is shown to be asymptotically consistent and robust in nature. Additionally, the proposed NSNT model obtain a fast rate of convergence which is near-optimal up to some logarithmic factor. We comprehensively benchmark the proposed method on a sample of 80 datasets (40 classification datasets and 40 regression datasets) from the UCI machine learning repository. We establish that the proposed method is likely to outperform the current state-of-the-art methods (random forest, XGBoost, optimal classification tree, and near-optimal nonlinear trees) for the majority of the datasets.


Author(s):  
Saranya N ◽  
◽  
Kavi Priya S ◽  

In recent years, due to the increasing amounts of data gathered from the medical area, the Internet of Things are majorly developed. But the data gathered are of high volume, velocity, and variety. In the proposed work the heart disease is predicted using wearable devices. To analyze the data efficiently and effectively, Deep Canonical Neural Network Feed-Forward and Back Propagation (DCNN-FBP) algorithm is used. The data are gathered from wearable gadgets and preprocessed by employing normalization. The processed features are analyzed using a deep convolutional neural network. The DCNN-FBP algorithm is exercised by applying forward and backward propagation algorithm. Batch size, epochs, learning rate, activation function, and optimizer are the parameters used in DCNN-FBP. The datasets are taken from the UCI machine learning repository. The performance measures such as accuracy, specificity, sensitivity, and precision are used to validate the performance. From the results, the model attains 89% accuracy. Finally, the outcomes are juxtaposed with the traditional machine learning algorithms to illustrate that the DCNN-FBP model attained higher accuracy.


2021 ◽  
Author(s):  
jorge cabrera Alvargonzalez ◽  
Ana Larranaga Janeiro ◽  
Sonia Perez ◽  
Javier Martinez Torres ◽  
Lucia martinez lamas ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been and remains one of the major challenges humanity has faced thus far. Over the past few months, large amounts of information have been collected that are only now beginning to be assimilated. In the present work, the existence of residual information in the massive numbers of rRT-PCRs that tested positive out of the almost half a million tests that were performed during the pandemic is investigated. This residual information is believed to be highly related to a pattern in the number of cycles that are necessary to detect positive samples as such. Thus, a database of more than 20,000 positive samples was collected, and two supervised classification algorithms (a support vector machine and a neural network) were trained to temporally locate each sample based solely and exclusively on the number of cycles determined in the rRT-PCR of each individual. Finally, the results obtained from the classification show how the appearance of each wave is coincident with the surge of each of the variants present in the region of Galicia (Spain) during the development of the SARS-CoV-2 pandemic and clearly identified with the classification algorithm.


2021 ◽  
pp. 1-47
Author(s):  
Umang H. Rathod ◽  
Vinayak Kulkarni ◽  
Ujjwal K. Saha

Abstract This paper addresses the application of artificial neural network (ANN) and genetic expression programming (GEP), the popular artificial intelligence and machine learning methods, in order to estimate the Savonius wind rotor's performance based on different independent design variables. Savonius wind rotor is one of the competent members of the vertical axis wind turbines (VAWTs) due to its advantageous qualities such as direction independency, design simplicity, ability to perform at low wind speeds, potent standalone system. The available experimental data on Savonius wind rotor have been used to train the ANN and GEP using MATLAB R2020b and GeneXProTools 5.0 software, respectively. The input variables used in ANN and GEP architecture include newly proposed design shape factors, number of blades and stages, gap and overlap lengths, height and diameter of the rotor, free stream velocity, end plate diameter and tip speed ratio, besides cross-sectional area of wind tunnel test section. Based on this, the unknown governing function constituted by the aforementioned input variables is established using ANN and GEP to approximate/forecast the rotor performance as an output. The governing equation formulated by ANN is in the form of weights and biases, while GEP provides it in the form of traditional mathematical functions. The trained ANN and GEP are capable to estimate the rotor performance with R2 ≈ 0.97 and R2 ≈ 0.65, respectively, in correlation with the reported experimental rotor performance.


Sign in / Sign up

Export Citation Format

Share Document