scholarly journals Cytokine mRNA expression in intestinal tissue of interleukin-2 deficient mice with bowel inflammation

Gut ◽  
1997 ◽  
Vol 41 (6) ◽  
pp. 793-800 ◽  
Author(s):  
I B Autenrieth ◽  
N Bucheler ◽  
E Bohn ◽  
G Heinze ◽  
I Horak

Background—Mice deficient in interleukin-2 (IL-2) develop inflammatory bowel disease resembling ulcerative colitis in humans. Recent studies provided evidence that αβ T cells, particularly CD4 T cells, rather than B cells, are involved in the pathogenesis of bowel inflammation of IL-2 deficient mice.Aim—To analyse the pattern of expression of cytokine mRNA in intestinal tissue of normal and IL-2 deficient mice.Methods—Expression of β-actin, IL-1α, IL-1β, IL-6, IL-10, tumour necrosis factor α (TNF-α), interferon γ (IFN-γ) and transforming growth factor β1 (TGF-β1) mRNA was analysed in colon and small intestinal tissue of both IL-2 deficient (IL-2−/−) mice and normal (wild type) litter mates (IL-2+/+) at different ages by using qualitative, as well as semiquantitative, competitive reverse transcription polymerase chain reaction (RT-PCR). Results were correlated with the phase of progression of the disease, as determined by histology.Results—IL-2−/− mice had expressed low levels of IL-1α, IL-1β, IL-6, TNF-α, and IFN-γ mRNA in the colon by 1.5 weeks of age. In advance of the development of histologically and clinically detectable bowel inflammation, expression of IL-1α, IL-1β, IL-6, TNF-α, IFN-γ, and IL-10, but not TGF-β1, mRNA increased in the colon of IL-2 deficient mice. In contrast, IL-2+/+ mice expressed TGF-β1 mRNA in colon tissue at 13 and 23 weeks of age, but not IL-1α, IL-1β, IL-6, TNF-α, IL-10, or IFN-γ mRNA. Levels of expression of cytokine mRNA in tissue from the small intestine were comparable in IL-2−/− and IL-2+/+ mice.Conclusions—Bowel inflammation in IL-2 deficient mice is preceded by an increase in IL-1α, IL-1β, TNF-α, and IFN-γ mRNA expression in colon tissue. Low levels of TGF-β1, but high levels of IL-1α, IL-1β, IL-6, TNF-α, IFN-γ, and IL-10 mRNA expression correlate with the manifestation of severe colitis, and suggest that T cells and macrophages are involved in bowel inflammation of IL-2 deficient mice.

2004 ◽  
Vol 31 (S 1) ◽  
Author(s):  
A Hug ◽  
J Haas ◽  
A Viehöver ◽  
B Fritz ◽  
B Storch-Hagenlocher ◽  
...  

2006 ◽  
Vol 74 (11) ◽  
pp. 6252-6263 ◽  
Author(s):  
Jodie S. Haring ◽  
John T. Harty

ABSTRACT Several lines of evidence from different model systems suggest that gamma interferon (IFN-γ) is an important regulator of T-cell contraction after antigen (Ag)-driven expansion. To specifically investigate the role of IFN-γ in regulating the contraction of Ag-specific CD4 T cells, we infected IFN-γ−/− and IFN-γR1−/− mice with attenuated Listeria monocytogenes and monitored the numbers of Ag-specific CD4 T cells during the expansion, contraction, and memory phases of the immune response to infection. In the absence of IFN-γ or the ligand-binding portion of its receptor, Ag-specific CD4 T cells exhibited normal expansion in numbers, but in both strains of deficient mice there was very little decrease in the number of Ag-specific CD4 T cells even at time points later than day 90 after infection. This significant delay in contraction was not due to prolonged infection, since mice treated with antibiotics to conclusively eliminate infection exhibited the same defect in contraction. In addition to altering the number of Ag-specific CD4 T cells, the absence of IFN-γ signaling also changed the phenotype of cells generated after infection. IFN-γR1−/− Ag-specific CD4 T cells reacquired expression of CD127 more quickly than wild-type cells, and more IFN-γR1−/− CD4 T cells were capable of producing both IFN-γ and interleukin 2 following Ag stimulation. From these data we conclude that IFN-γ regulates the contraction, phenotype, and function of Ag-specific CD4 T cells generated after infection.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4099-4099
Author(s):  
Zhenhua Qiao ◽  
Xiujuan Zhao

Abstract Objective: To explore mechanism of human marrow mesenchymal stem cells (MSCs) in treating patients with aplastic anemia(AA). Methods: MSCs in patients with aplastic anemia(AA) and the control group were separated with Percoll(1.073g/m L) and cultured in low glucose DMEM. Then, observed their morphologies,checked their molecule surface antigen by flow cytometry and examined the process of adipogenic differention. The mononuclear cells (MNC)of marrow in patients with AA were enriched based 1.077g/L density centrifuge and cultured in the 1640 medium. (1)MSC in control group and MNC in AA group were co-cultured with or without cytokines. The function of supporting hematopoiesis for MSC was to be observed in single confluence layer after plating by counting the total cells and the clones in every well every week. Then analyzed the dynamics of proliferation. T cells were harvested by using nylon column. MSC in control group and T cells in AA group were co-cultured. The proliferation of T cell was measured by MTT method. The CD25,CD69,CD4,CD8,Annexin-V expression rates of CD3+T cells were analyzed by flow cytometry .The gene and protein of IL-2, IL-4,IL-10,TNF-α,IFN-γ,TGF-β1 were examined by RT-PCR and ELISA respectively. MSC treated to the model of AA, by the examination of peripheral hemogram, bone marrow biopsy, pathological section of spleen. Results: There was no significant difference between control group MSC and AA-MSC in morphologies but adipogenic differentiation in AA patients is earlier than controls. The clones of CFU-GM in group(MSC)(78.46±3.58)/2×105 cells, after 14 days cultured was significantly higher than(9.21±4.32)/2×105 cells in group(CK + DMEM medium), while lower than (99.32±4.34)/2×105 cells in group(MSC+CK). (1)the Treg cells (TCD4+CD25+) in AA group (2.01±1.21)/ 2×105 was significantly lower than (4.43±1.67)/2×105 cells in control group, while(5.43±2.31) / 2×105 in group (MSC+AAT) was no more than (4.43±1.67)/2×105 cells in control group. (2) MSCs significantly inhibited T cell proliferation (P< 0. O5)by MTT. (3) RT-PCR and ELISA analysis showed that MSCs induced the expression of IL-4, IL-10, TGF-β1 and decreased significantly the expression of IL-2, TNF-α, IFN -γ in T cells of AA. the model of AA treated by MSCs showed improvements in 3 blood components greatly(p<0.05), Bone marrow proliferated and restored to the normal level, hematopoietic cell increased obviously (hematopoietic cell capacity was more than 40%), and atrophied spleen restore to normality. Conclusions: morphologies of AA’MSC had no evident different with the control but was more easy adipogenic differention. aplastic anemia belongs to autoimmune diseases in which T cells effect organ-specific destruction. The fundamental mechanism of MSC in treating AA should be potential to promote hematopoietic cell proliferation by adjusting immunity.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4522-4522 ◽  
Author(s):  
Ashish Juvekar ◽  
Bruce Ruggeri ◽  
Sindy Condon ◽  
Andrew Borkowski ◽  
Reid Huber ◽  
...  

Abstract Introduction: Graft-versus-host disease (GvHD) is a severe complication arising in patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT). Potent and selective modulation of JAK1/STAT-mediated signaling is an attractive therapeutic strategy for the management of acute GvHD and is currently being evaluated in clinical trials (GRAVITAS-301: NCT03139604; GRAVITAS-119: NCT03320642). Methods: Acute GvHD was induced in BALB/c mice using the established MHC-mismatched mouse model. BALB/c (H-2Kd) recipients were given an intravenous injection of a combination of splenocytes and T cell depleted bone marrow cells from allogeneic cell transfer from donor C57BL/6 (H-2Kb) mice. Animals were dosed orally with vehicle or the selective JAK1 inhibitor, itacitinib (60 mg/kg or 120 mg/kg twice daily). Engraftment was analyzed for the proportion of donor and host leukocytes (CD45+, H-2Kb, and H-2Kd). GvHD clinical scores were assessed by standard methods and inflammatory cytokine profiles in blood and colon quantified by multiplex analysis. Colon samples were sectioned and stained with the following immunohistochemical (IHC) markers: CD4, CD8, phosphoSTAT3 and CD3+phosphoSTAT3 (dual staining) for pharmacodynamic assessment of JAK/STAT pathway activity in colon and infiltrating T-cells. Effects of itacitinib on preservation of Graft-versus-Leukemia (GVL) were evaluated by injecting BALB/c mice with A20 lymphoma cells that are of H-2Kd phenotype along with combination of splenocytes and T cell depleted bone marrow from C57BL/6 (H-2Kb) mice. Results: Itacitinib administration was highly effective in both prophylactic (from day −3) and therapeutic (from day 14) dosing regimens in ameliorating body weight loss and improving GvHD scores. Itacitinib did not significantly impact donor engraftment as determined by CD45+/H-2Kb quantification by flow cytometry. Similar efficacy was observed with 60 mg/kg versus 120 mg/kg twice daily dosing regimens. Oral itacitinib administration achieved JAK1 IC50 coverage for 4 h and 12 h at 60 mg/kg twice daily and 120 mg/kg twice daily, respectively. Associated with GvHD progression, maximal upregulation of inflammatory cytokines were observed in peripheral blood on day 17 (IFN-γ, TNF-α, IL-6, IL-13) and in colon on day 28 (IFN-γ, TNF-α, IL-1β). Itacitinib (120 mg/kg twice daily) treatment significantly reduced the inflammatory cytokine milieu at these disease stages. No differences were observed in absolute number of CD4+ T cells and CD8+ T cells in blood and spleen with itacitinib treatment, but significant reductions were detected in CD4+ T cells and CD8+ T cells in the inflamed colon tissue along with significant JAK1/STAT3 inhibition as measured by reductions in normalized pSTAT3 in T cells and colonic epithelial cells. Itacitinib treatment did not negatively impact GVL responses, as evidence by T cell mediated reduction of tumor burden. Furthermore, itacitinib treatment enhanced the survival of the recipient BALB/c mice in comparison to the vehicle treated animals. Conclusions: Itacitinib, a selective JAK1 inhibitor ameliorated GvHD severity when administered prophylactically or therapeutically and had no detrimental effects on engraftment and preservation of GVL. Furthermore, itacitinib inhibited JAK1/STAT3 activation in diseased colon tissue and infiltrating T-cells, and reduced disease burden and improved survival by modulating levels of inflammatory cytokines important in the pathophysiology of acute GvHD. Disclosures Juvekar: Incyte Corporation: Employment. Ruggeri:Incyte Corporation: Employment. Condon:Incyte Corporation: Employment. Borkowski:Biomodels LLC: Employment. Huber:Incyte Corporation: Employment. Smith:Incyte Corporation: Employment.


1999 ◽  
Vol 6 (4) ◽  
pp. 471-478 ◽  
Author(s):  
R. Harley ◽  
C. R. Helps ◽  
D. A. Harbour ◽  
T. J. Gruffydd-Jones ◽  
M. J. Day

ABSTRACT Semiquantitative reverse transcription-PCR assays were developed to measure feline interleukin-2 (IL-2), IL-4, IL-5, IL-6, IL-10, and IL-12 (p35 & p40); gamma interferon (IFN-γ); and glyceraldehyde-3-phosphate dehydrogenase mRNA concentrations in biopsies of feline oral mucosa. Biopsies were collected from 30 cats with chronic gingivostomatitis (diseased) prior to each cat receiving one of four treatments. In 23 cases replicate biopsies were collected 3 months after treatment commenced. Biopsies were also analyzed from 11 cats without clinical disease (nondiseased). Expression of IL-2, IL-10, IL-12 (p35 and p40), and IFN-γ was detected in most nondiseased biopsies, while IL-6 was detected in a minority, and IL-4 and IL-5 were both undetectable. Compared to nondiseased cats, the diseased population showed a significant increase in the relative mRNA expression of IL-2, IL-4, IL-6, IL-10, IL-12 (p35 and p40), and IFN-γ. In contrast, IL-5 mRNA expression was unchanged and was only detected in one case. No significant relationship was demonstrable between the change in relative expression of specific cytokine mRNA and the change in clinical severity of the local mucosal lesions over the treatment period. The results demonstrate that the normal feline oral mucosa is biased towards a predominantly (Th) type 1 profile of cytokine expression and that during the development of lesions seen in feline chronic gingivostomatitis there is a shift in the cytokine profile from a type 1 to a mixed type 1 and type 2 response.


2006 ◽  
Vol 74 (1) ◽  
pp. 282-288 ◽  
Author(s):  
Melanie J. Ragin ◽  
Nisebita Sahu ◽  
Avery August

ABSTRACT NKT cells are a heterogeneous population characterized by the ability to rapidly produce cytokines, such as interleukin 2 (IL-2), IL-4, and gamma interferon (IFN-γ) in response to infections by viruses, bacteria, and parasites. The bacterial superantigen staphylococcal enterotoxin B (SEB) interacts with T cells bearing the Vβ3, -7, or -8 T-cell receptors, inducing their expansion and cytokine secretion, leading to death in some cases due to cytokine poisoning. The majority of NKT cells bear the Vβ7 or -8 T-cell receptor, suggesting that they may play a role in regulating this response. Using mice lacking NKT cells (CD1d−/− and Jα18−/− mice), we set out to identify the role of these cells in T-cell expansion, cytokine secretion, and toxicity induced by exposure to SEB. We find that Vβ8+ CD4+ T-cell populations similarly expand in wild-type (WT) and NKT cell-null mice and that NKT cells did not regulate the secretion of IL-2. By contrast, these cells positively regulated the secretion of IL-4 and IFN-γ production and negatively regulated the secretion of tumor necrosis factor alpha (TNF-α). However, this negative regulation of TNF-α secretion by NKT cells provides only a minor protective effect on SEB-mediated shock in WT mice compared to mice lacking NKT cells. These data suggest that NKT cells may regulate the nature of the cytokine response to exposure to the superantigen SEB and may act as regulatory T cells during exposure to this superantigen.


1999 ◽  
Vol 189 (6) ◽  
pp. 1011-1016 ◽  
Author(s):  
Gregory D. Sempowski ◽  
David M. Lee ◽  
Richard M. Scearce ◽  
Dhavalkumar D. Patel ◽  
Barton F. Haynes

CD7 is an immunoglobulin superfamily molecule involved in T and natural killer (NK) cell activation and cytokine production. CD7-deficient animals develop normally but have antigen-specific defects in interferon (IFN)-γ production and CD8+ CTL generation. To determine the in vivo role of CD7 in systems dependent on IFN-γ, the response of CD7-deficient mice to lipopolysaccharide (LPS)-induced shock syndromes was studied. In the high-dose LPS-induced shock model, 67% of CD7-deficient mice survived LPS injection, whereas 19% of control C57BL/6 mice survived LPS challenge (P &lt; 0.001). CD7-deficient or C57BL/6 control mice were next injected with low-dose LPS (1 μg plus 8 mg D-galactosamine [D-gal] per mouse) and monitored for survival. All CD7-deficient mice were alive 72 h after injection of LPS compared with 20% of C57BL/6 control mice (P &lt; 0.001). After injection of LPS and D-gal, CD7-deficient mice had decreased serum IFN-γ and tumor necrosis factor (TNF)-α levels compared with control C57BL/6 mice (P &lt; 0.001). Steady-state mRNA levels for IFN-γ and TNF-α in liver tissue were also significantly decreased in CD7-deficient mice compared with controls (P &lt; 0.05). In contrast, CD7-deficient animals had normal liver interleukin (IL)-12, IL-18, and interleukin 1 converting enzyme (ICE) mRNA levels, and CD7-deficient splenocytes had normal IFN-γ responses when stimulated with IL-12 and IL-18 in vitro. NK1.1+/ CD3+ T cells are known to be key effector cells in the pathogenesis of toxic shock. Phenotypic analysis of liver mononuclear cells revealed that CD7-deficient mice had fewer numbers of liver NK1.1+/CD3+ T cells (1.5 ± 0.3 × 105) versus C57BL/6 control mice (3.7 ± 0.8 × 105; P &lt; 0.05), whereas numbers of liver NK1.1+/CD3− NK cells were not different from controls. Thus, targeted disruption of CD7 leads to a selective deficiency of liver NK1.1+/ CD3+ T cells, and is associated with resistance to LPS shock. These data suggest that CD7 is a key molecule in the inflammatory response leading to LPS-induced shock.


2001 ◽  
Vol 8 (6) ◽  
pp. 1097-1103 ◽  
Author(s):  
Janine Jason ◽  
Lennox K. Archibald ◽  
Okey C. Nwanyanwu ◽  
Martha G. Byrd ◽  
Peter N. Kazembe ◽  
...  

ABSTRACT Cytokines function at the cellular, microenvironmental level, but human cytokine assessment is most commonly done at the macro level, by measuring serum cytokines. The relationships between serum and cellular cytokines, if there are any, are undefined. In a study of hospitalized patients in Malawi, we compared cytometrically assessed, cell-specific cytokine data to serum interleukin 2 (IL-2), IL-4, IL-6, IL-8, IL-10, gamma interferon (IFN-γ), and tumor necrosis factor alpha (TNF-α) levels in 16 children and 71 (IL-2, -4, -6, -10) or 159 (IL-8, IFN-γ, and TNF-α) adults, using Wilcoxon rank sum tests and Pearson's (rp ) and Spearman's (rs ) rank correlations. For the entire study group, correlations between identical serum and cellular cytokines mainly involved IL-8 and IFN-γ, were few, and were weakly positive (r < 0.40). Blood culture-positive persons had the most and strongest correlations, including those between serum IL-2 levels and the percentages of lymphocytes spontaneously making IL-2 (rs = +0.74), serum IL-8 levels and the percentages of lymphocytes spontaneously making IL-8 (rp = +0.66), and serum IL-10 levels and the percentages of CD8+ T cells making TNF-α (rp = +0.89). Human immunodeficiency virus (HIV)-positive persons had the next largest number of correlations, including several serum IL-8 level correlations, correlation of serum IL-10 levels with the percentages of lymphocytes producing induced IL-10 (rs = +0.36), and correlation of serum IFN-γ levels and the percentages of lymphocytes spontaneously making both IL-6 and IFN-γ in the same cell (rp = +0.59). HIV-negative, malaria smear-positive, and pediatric patients had few significant correlations; for the second and third of these subgroups, serum IL-8 level was correlated with the percentage of CD8− T cells producing induced IL-8 (rs = +0.40 and rs = +0.56, respectively). Thus, the strength of associations between serum and cellular cytokines varied with the presence or absence of bloodstream infection, HIV status, and perhaps other factors we did not assess. These results strongly suggest that serum cytokines at best only weakly reflect peripheral blood cell cytokine production and balances.


2004 ◽  
Vol 11 (2) ◽  
pp. 239-244 ◽  
Author(s):  
Bang-Ning Lee ◽  
Michele Follen ◽  
De-Yu Shen ◽  
Anais Malpica ◽  
Karen Adler-Storthz ◽  
...  

ABSTRACT Carcinoma of the cervix is causally related to infection with the human papillomavirus (HPV), and T cells play a pivotal role in the immune response of the host to rid itself of HPV infection. Therefore, we assessed the T-cell function of women with HPV-related cervical neoplasia against a superantigen, Staphylococcus enterotoxin B (SEB). Each woman provided a cervical brush specimen for HPV DNA testing and Papanicolaou (Pap) smears for the staging of cervical lesions. They also provided a blood specimen for determination of the ability of CD4+ T and CD8+ T cells to synthesize Th1 (interleukin-2 [IL-2], gamma interferon [IFN-γ], and tumor necrosis factor alpha [TNF-α]) and Th2 (IL-10) cytokines in response to activation with SEB. Compared with control subjects with self-attested negative Pap smears, women with high-grade squamous intraepithelial lesions (HSIL) had significantly lower percentages of activated CD4+ T cells that produced IL-2 (P = 0.045), IFN-γ (P = 0.040), and TNF-α (P = 0.015) and a significantly lower percentage of activated CD8+ T cells that produced IL-2 (P < 0.01). These data indicate that women with HPV-related cervical HSIL show a decrease in Th1 cytokine production by activated CD4+ T cells and suggested that compromised T-helper functions may negatively impact the function of cytotoxic CD8+ T cells.


2009 ◽  
Vol 77 (11) ◽  
pp. 4837-4846 ◽  
Author(s):  
Ajay Grover ◽  
Jennifer Taylor ◽  
JoLynn Troudt ◽  
Andrew Keyser ◽  
Kimberly Arnett ◽  
...  

ABSTRACT The guinea pig model of tuberculosis is used extensively in assessing novel vaccines, since Mycobacterium bovis BCG vaccination effectively prolongs survival after low-dose aerosol infection with virulent M. tuberculosis. To better understand how BCG extends time to death after pulmonary infection with M. tuberculosis, we examined cytokine responses postvaccination and recruitment of activated T cells and cytokine response postinfection. At 10 weeks postvaccination, splenic gamma interferon (IFN-γ) mRNA was significantly elevated compared to the levels at 5 weeks in ex vivo stimulation assays. At 15, 40, 60, and 120 days postinfection, T-cell activation (CD4+ CD62Llow and CD8+ CD62Llow) and mRNA expression of IFN-γ, tumor necrosis factor alpha (TNF-α), interleukin-1 (IL-1), IL-10, IL-12, and eomesodermin were assessed. Our data show that at day 40, BCG-vaccinated guinea pigs had significantly increased levels of IFN-γ mRNA expression but decreased TNF-α mRNA expression in their lungs compared to the levels in nonvaccinated animals. At day 120, a time when nonvaccinated guinea pigs succumbed to infection, low levels of IFN-γ mRNA were observed even though there were increasing levels of IL-1, IL-12, and IL-10, and the numbers of activated T cells did not differ from those in BCG-vaccinated animals. BCG vaccination conferred the advantage of recruiting greater numbers of CD4+ CD62Llow T cells at day 40, although the numbers of CD8+ CD62Llow T cells were not elevated compared to the numbers in nonvaccinated animals. Our data suggest that day 40 postinfection may be a pivotal time point in determining vaccine efficacy and prolonged survival and that BCG promotes the capacity of T cells in the lungs to respond to infection.


Sign in / Sign up

Export Citation Format

Share Document