Carbon footprint from superfluous colonoscopies: potentialities to scale down the impact

Gut ◽  
2022 ◽  
pp. gutjnl-2021-326587
Author(s):  
Thomas Bjørsum-Meyer ◽  
Ervin Toth ◽  
Anastasios Koulaouzidis
2020 ◽  
pp. 1-10
Author(s):  
Colin J. McMahon ◽  
Justin T. Tretter ◽  
Theresa Faulkner ◽  
R. Krishna Kumar ◽  
Andrew N. Redington ◽  
...  

Abstract Objective: This study investigated the impact of the Webinar on deep human learning of CHD. Materials and methods: This cross-sectional survey design study used an open and closed-ended questionnaire to assess the impact of the Webinar on deep learning of topical areas within the management of the post-operative tetralogy of Fallot patients. This was a quantitative research methodology using descriptive statistical analyses with a sequential explanatory design. Results: One thousand-three-hundred and seventy-four participants from 100 countries on 6 continents joined the Webinar, 557 (40%) of whom completed the questionnaire. Over 70% of participants reported that they “agreed” or “strongly agreed” that the Webinar format promoted deep learning for each of the topics compared to other standard learning methods (textbook and journal learning). Two-thirds expressed a preference for attending a Webinar rather than an international conference. Over 80% of participants highlighted significant barriers to attending conferences including cost (79%), distance to travel (49%), time commitment (51%), and family commitments (35%). Strengths of the Webinar included expertise, concise high-quality presentations often discussing contentious issues, and the platform quality. The main weakness was a limited time for questions. Just over 53% expressed a concern for the carbon footprint involved in attending conferences and preferred to attend a Webinar. Conclusion: E-learning Webinars represent a disruptive innovation, which promotes deep learning, greater multidisciplinary participation, and greater attendee satisfaction with fewer barriers to participation. Although Webinars will never fully replace conferences, a hybrid approach may reduce the need for conferencing, reduce carbon footprint. and promote a “sustainable academia”.


Author(s):  
Min Shang ◽  
Ji Luo

The expansion of Xi’an City has caused the consumption of energy and land resources, leading to serious environmental pollution problems. For this purpose, this study was carried out to measure the carbon carrying capacity, net carbon footprint and net carbon footprint pressure index of Xi’an City, and to characterize the carbon sequestration capacity of Xi’an ecosystem, thereby laying a foundation for developing comprehensive and reasonable low-carbon development measures. This study expects to provide a reference for China to develop a low-carbon economy through Tapio decoupling principle. The decoupling relationship between CO2 and driving factors was explored through Tapio decoupling model. The time-series data was used to calculate the carbon footprint. The auto-encoder in deep learning technology was combined with the parallel algorithm in cloud computing. A general multilayer perceptron neural network realized by a parallel BP learning algorithm was proposed based on Map-Reduce on a cloud computing cluster. A partial least squares (PLS) regression model was constructed to analyze driving factors. The results show that in terms of city size, the variable importance in projection (VIP) output of the urbanization rate has a strong inhibitory effect on carbon footprint growth, and the VIP value of permanent population ranks the last; in terms of economic development, the impact of fixed asset investment and added value of the secondary industry on carbon footprint ranks third and fourth. As a result, the marginal effect of carbon footprint is greater than that of economic growth after economic growth reaches a certain stage, revealing that the driving forces and mechanisms can promote the growth of urban space.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2538
Author(s):  
Praveen K. Cheekatamarla

Electrical and thermal loads of residential buildings present a unique opportunity for onsite power generation, and concomitant thermal energy generation, storage, and utilization, to decrease primary energy consumption and carbon dioxide intensity. This approach also improves resiliency and ability to address peak load burden effectively. Demand response programs and grid-interactive buildings are also essential to meet the energy needs of the 21st century while addressing climate impact. Given the significance of the scale of building energy consumption, this study investigates how cogeneration systems influence the primary energy consumption and carbon footprint in residential buildings. The impact of onsite power generation capacity, its electrical and thermal efficiency, and its cost, on total primary energy consumption, equivalent carbon dioxide emissions, operating expenditure, and, most importantly, thermal and electrical energy balance, is presented. The conditions at which a cogeneration approach loses its advantage as an energy efficient residential resource are identified as a function of electrical grid’s carbon footprint and primary energy efficiency. Compared to a heat pump heating system with a coefficient of performance (COP) of three, a 0.5 kW cogeneration system with 40% electrical efficiency is shown to lose its environmental benefit if the electrical grid’s carbon dioxide intensity falls below 0.4 kg CO2 per kWh electricity.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1271
Author(s):  
Humberto. J. Prado-Galiñanes ◽  
Rosario Domingo

Industries are nowadays not only expected to produce goods and provide services, but also to do this sustainably. What qualifies a company as sustainable implies that its activities must be defined according to the social and ecological responsibilities that are meant to protect the society and the environment in which they operate. From now on, it will be necessary to consider and measure the impact of industrial activities on the environment, and to do so, one key parameter is the carbon footprint. This paper demonstrates the utility of the LCI as a tool for immediate application in industries. Its application shall facilitate decision making in industries while choosing amongst different scenarios to industrialize a certain product with the lowest environmental impact possible. To achieve this, the carbon footprint of a given product was calculated by applying the LCI method to several scenarios that differed from each other only in the supply-chain model. As a result of this LCI calculation, the impact of the globalization of a good’s production was quantified not only financially, but also environmentally. Finally, it was concluded that the LCI/LCA methodology can be considered as a fundamental factor in the new decision-making strategy that sustainable companies must implement while deciding on the business and industrial plan for their new products and services.


2017 ◽  
Vol 12 (7) ◽  
pp. 1600633 ◽  
Author(s):  
Matthias Brunner ◽  
Philipp Braun ◽  
Philipp Doppler ◽  
Christoph Posch ◽  
Dirk Behrens ◽  
...  

2020 ◽  
Vol 4 (1) ◽  
pp. 13-26
Author(s):  
Sally Olasogba ◽  
Les DUCKERS

Abstract: Aim: According to COP23, Climate Change threatens the stability of the planet’s ecosystems, with a tipping point believed to be at only +2°C.  With the burning of fossil fuels, held responsible for the release of much of the greenhouse gases, a sensible world- wide strategy is to replace fossil fuel energy sources with renewable ones. The renewable resources such as wind, hydro, geothermal, wave and tidal energies are found in particular geographical locations whereas almost every country is potentially able to exploit PV and biomass. This paper examines the role that changing climate could have on the growing and processing of biomass. The primary concern is that future climates could adversely affect the yield of crops, and hence the potential contribution of biomass to the strategy to combat climate change. Maize, a C4 crop, was selected for the study because it can be processed into biogas or other biofuels. Four different Nigerian agricultural zones growing maize were chosen for the study. Long-term weather data was available for the four sites and this permitted the modelling of future climates. Design / Research methods: The results of this study come from modelling future climates and applying this to crop models. This unique work, which has integrated climate change and crop modelling to forecast yield and carbon emissions, reveals how maize responds to the predicted increased temperature, change in rainfall, and the variation in weather patterns. In order to fully assess a biomass crop, the full energy cycle and carbon emissions were estimated based on energy and materials inputs involved in farm management: fertilizer application, and tillage type. For maize to support the replacement strategy mentioned above it is essential that the ratio of energy output to energy input exceeds 1, but of course it should be as large as possible. Conclusions / findings: Results demonstrate that the influence of climate change is important and in many scenarios, acts to reduce yield, but that the negative effects can be partially mitigated by careful selection of farm management practices. Yield and carbon footprint is particularly sensitive to the application rate of fertilizer across all locations whilst climate change is the causal driver for the increase in net energy and carbon footprint at most locations. Nonetheless, in order to ensure a successful strategic move towards a low carbon future, and sustainable implementation of biofuel policies, this study provides valuable information for the Nigerian government and policy makers on potential AEZs to cultivate maize under climate change. Further research on the carbon footprint of alternative bioenergy feedstock to assess their environmental carbon footprint and net energy is strongly suggested. Originality / value of the article: This paper extends the review on the impact of climate change on maize production to include future impacts on net energy use and carbon footprint using a fully integrated assessment framework. Most studies focus only on current farm energy use and historical climate change impact on farm GHG emissions.   


Author(s):  
Praveen Cheekatamarla ◽  
Vishaldeep Sharma ◽  
Bo Shen

Abstract Economic and population growth is leading to increased energy demand across all sectors – buildings, transportation, and industry. Adoption of new energy consumers such as electric vehicles could further increase this growth. Sensible utilization of clean renewable energy resources is necessary to sustain this growth. Thermal needs in a building pose a significant challenge to the energy infrastructure. Supporting the current and future building thermal energy needs to offset the total electric demand while lowering the carbon footprint and enhancing the grid flexibility is presented in this study. Performance assessment of heat pumps, renewable energy, non-fossil fuel-based cogeneration systems, and their hybrid configurations was conducted. The impact of design configuration, coefficient of performance (COP), electric grid's primary energy efficiency on the key attributes of total carbon footprint, life cycle costs, operational energy savings, and site-specific primary energy efficiency are analyzed and discussed in detail.


2021 ◽  
Vol 17 (5) ◽  
pp. 913-939
Author(s):  
Tat'yana S. REMIZOVA ◽  
Dmitrii B. KOSHELEV

Subject. The article reviews various transport electrification scenarios, which would help reduce the CO2 emissions and environmental threats. The environmental and economic security can also be affected if the State insufficiently understands the importance of electric vehicle development, their popularization. It is also crucial to encourage the consumption, develop the infrastructure, innovative projects, which reshape the power engineering structure. Objectives. We determine how global trends influence the production and integration of electric vehicles in Russia. We also evaluate the environmental and cost effectiveness of morot vehicle electrification, opportunities and trajectories for the electric vehicle development nationwide. Methods. The study involves methods used to summarize regulatory, empirical and theoretical data, and general and partial scientific methods and techniques, such as abstraction, analysis, analogy, etc. Results. The article shows the extent of electric transport development worldwide, and focuses on environmental issues and opportunities to reduce the carbon footprint by using electric vehicles and renewable energy sources. We point out opportunities, threats, prospects and disadvantages of the electric vehicle use in Russia. The article indicates how the use of electric cars can be developed in Russia, considering changes in the production structure and the generation of positive effects as much as possible. Conclusions. Currently, Russia evidently lags behind the global production and use of electric cars, without having a priority of the carbon footprint reduction. The strategy for the car segment advancement is underdeveloped. Suggested herein, the ideas for the electric car segment development are aimed to encourage the consumption, production, advancement of infrastructure and innovative projects, and ensure the environmental security of the country.


2017 ◽  
Author(s):  
Luca A. Panzone ◽  
Alistair Ulph ◽  
Daniel John Zizzo ◽  
Denis Hilton ◽  
Adrian Clear

2018 ◽  
Vol 10 (12) ◽  
pp. 4688
Author(s):  
Marina Nikolić Topalović ◽  
Milenko Stanković ◽  
Goran Ćirović ◽  
Dragan Pamučar

Research was conducted to indicate the impact of the increased flow of thermal insulation materials on the environment due to the implementation of the new regulations on energy efficiency of buildings. The regulations on energy efficiency of buildings in Serbia came into force on 30 September 2012 for all new buildings as well as for buildings in the process of rehabilitation and reconstruction. For that purpose, the carbon footprint was analyzed in three scenarios (BS, S1 and S2) for which the quantities of construction materials and processes were calculated. The life cycle analysis (LCA), which is the basis for analyzing the carbon life cycle (LCACO2), was used in this study. Carbon Calculator was used for measuring carbon footprint, and URSA program to calculate the operational energy. This study was done in two phases. In Phase 1, the embodied carbon was measured to evaluate short-term effects of the implementation of the new regulations. Phase 2 included the first 10 years of building exploitation to evaluate the long-term effects of the new regulations. The analysis was done for the period of 10 years, further adjustments to the regulations regarding energy efficiency of the buildings in Serbia are expected in accordance with EU directives. The study shows that, in the short-run, Scenario BS has the lowest embodied carbon. In the long-run, after 3.66 years, Scenario S2 becomes a better option regarding the impact on the environment. The study reveals the necessity to include embodied carbon together with the whole life carbon to estimation the impact of a building on the environment.


Sign in / Sign up

Export Citation Format

Share Document