Immune checkpoint inhibitor-induced gastrointestinal and hepatic injury: pathologists’ perspective

2018 ◽  
Vol 71 (8) ◽  
pp. 665-671 ◽  
Author(s):  
Dipti M Karamchandani ◽  
Runjan Chetty

Immune checkpoint inhibitors (CPIs) are a relatively new class of ‘miracle’ dugs that have revolutionised the treatment and prognosis of some advanced-stage malignancies, and have increased the survival rates significantly. This class of drugs includes cytotoxic T lymphocyte antigen-4 inhibitors such as ipilimumab; programmed cell death protein-1 inhibitors such as nivolumab, pembrolizumab and avelumab; and programmed cell death protein ligand-1 inhibitors such as atezolizumab. These drugs stimulate the immune system by blocking the coinhibitory receptors on the T cells and lead to antitumoural response. However, a flip side of these novel drugs is immune-related adverse events (irAEs), secondary to immune-mediated process due to disrupted self-tolerance. The irAEs in the gastrointestinal (GI) tract/liver may result in diarrhoea, colitis or hepatitis. An accurate diagnosis of CPI-induced colitis and/or hepatitis is essential for optimal patient management. As we anticipate greater use of these drugs in the future given the significant clinical response, pathologists need to be aware of the spectrum of histological findings that may be encountered in GI and/or liver biopsies received from these patients, as well as differentiate them from its histopathological mimics. This present review discusses the clinical features, detailed histopathological features, management and the differential diagnosis of the luminal GI and hepatic irAEs that may be encountered secondary to CPI therapy.

2017 ◽  
Vol 103 (2) ◽  
pp. 365-369 ◽  
Author(s):  
Chen Zhao ◽  
Sri Harsha Tella ◽  
Jaydira Del Rivero ◽  
Anuhya Kommalapati ◽  
Ifechukwude Ebenuwa ◽  
...  

Abstract Context Immune checkpoint inhibitors, including anti–programmed cell death protein 1 (PD-1), anti–programmed cell death protein ligand 1 (PD-L1), and anti–cytotoxic T-lymphocyte antigen 4 (anti-CTLA4) monoclonal antibodies, have been widely used in cancer treatment. They are known to cause immune-related adverse events (irAEs), which resemble autoimmune diseases. Anterior pituitary hypophysitis with secondary hypopituitarism is a frequently reported irAE, especially in patients receiving anti–CTLA4 treatment. In contrast, posterior pituitary involvement, such as central diabetes insipidus (DI), is relatively rare and is unreported in patients undergoing PD-1/PD-L1 blockade. Case Description We describe a case of a 73-year-old man with Merkel cell carcinoma who received the anti–PD-L1 monoclonal antibody avelumab and achieved partial response. The patient developed nocturia, polydipsia, and polyuria 3 months after starting avelumab. Further laboratory testing revealed central DI. Avelumab was held and he received desmopressin for the management of central DI. Within 6 weeks after discontinuation of avelumab, the patient’s symptoms resolved and he was eventually taken off desmopressin. The patient remained off avelumab and there were no signs or symptoms of DI 2 months after the discontinuation of desmopressin. Conclusion To our knowledge, this is the first report of central DI associated with anti–PD-L1 immunotherapy. The patient’s endocrinopathy was successfully managed by holding treatment with the immune checkpoint inhibitor. This case highlights the importance of early screening and appropriate management of hormonal irAEs in subjects undergoing treatment with immune checkpoint inhibitors to minimize morbidity and mortality.


2020 ◽  
Vol 33 (5) ◽  
pp. 335
Author(s):  
Nuno Gomes ◽  
Vincent Sibaud ◽  
Filomena Azevedo ◽  
Sofia Magina

Introduction: Immune checkpoint inhibitors revolutionized anti-neoplastic treatment. Recently, the European Medicines Agency and the United States Food and Drug Administration approved inhibitors of various immune checkpoints, namely the cytotoxic T-lymphocyte-associated protein 4, programmed cell death protein 1 and its ligand. Despite the added benefits in the treatment of several neoplasms, immune checkpoint blockade may also be associated with multiple immune-related adverse events.Material and Methods: A literature review in PubMed database on the cutaneous toxicity of immune checkpoint inhibitors was performed until April 30, 2019.Results and Discussion: A total of 380 articles were initially screened, of which 75 are the basis of this bibliographic review. The immune checkpoint inhibitors monoclonal antibodies produce their beneficial effects by activating the patient’s immune system. This activation also results in adverse events that can affect any organ, whereas cutaneous toxicity is the most frequent and precocious. The adverse events of the programmed cell death protein 1 and its ligand and of the cytotoxic T-lymphocyte-associated protein 4 are similar (class effect), despite the apparent higher skin toxicity of inhibitors of the cytotoxic T-lymphocyte-associated protein 4 (or its use in combination with inhibitors of programmed cell death protein 1 and its ligand). The most common cutaneous toxicities are maculopapular exanthema and pruritus, but other more specific adverse effects (e.g. lichenoid or psoriasiform reaction, vitiligo, sarcoidosis, among others) or located in the oral mucosa and/or adnexa are underreported.Conclusion: Given the high rate of cutaneous toxicity associated with new immune checkpoint inhibitors and their impact on quality of life, their early recognition and appropriate approach are crucial in the treatment of cancer patients. Observation by a dermatologist should be provided in patients with certain toxicities.


Author(s):  
Barbara Barnes Rogers, CRNP, MN, AOCN, ANP-BC ◽  
Carolyn Zawislak, MPAS, PA-C ◽  
Victoria Wong, PA-C

Immune checkpoint inhibitors target suppressor receptors, including cytotoxic T-lymphocyte–associated antigen 4 (CTLA-4), programmed cell death protein 1 (PD-1), and programmed cell death ligand 1 (PD-L1). The activated T cells are not antigen specific; therefore, the blockade of the immune checkpoint may result in the development of autoimmune adverse events. The most common immune-related adverse events (irAEs) are rash, colitis, and endocrinopathies. However, irAEs that affect the hematologic system are rare and can affect red blood cells (e.g., autoimmune hemolytic anemia), white blood cells, and platelets (e.g., immune thrombocytopenia). Usually one cell line is affected; however, in some cases, multiple cell lines can be affected. Other changes in the hematologic system can also be affected (e.g., cryoglobulinemia, cytokine release syndrome). Due to the rarity and lack of recognition of these AEs, the timing, spectrum of events, and clinical presentation are poorly understood. Management of hematologic irAEs usually involves the use of steroids; however, other agents (e.g., IVIG, cyclosporine, rituximab) or procedures (e.g., plasma exchange, transfusions) can also be used.


Author(s):  
Nádia Ghinelli Amôr ◽  
Paulo Sérgio da Silva Santos ◽  
Ana Paula Campanelli

Squamous cell carcinoma (SCC) is the second most common skin cancer worldwide and, despite the relatively easy visualization of the tumor in the clinic, a sizeable number of SCC patients are diagnosed at advanced stages with local invasion and distant metastatic lesions. In the last decade, immunotherapy has emerged as the fourth pillar in cancer therapy via the targeting of immune checkpoint molecules such as programmed cell-death protein-1 (PD-1), programmed cell death ligand-1 (PD-L1), and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). FDA-approved monoclonal antibodies directed against these immune targets have provide survival benefit in a growing list of cancer types. Currently, there are two immunotherapy drugs available for cutaneous SCC: cemiplimab and pembrolizumab; both monoclonal antibodies (mAb) that block PD-1 thereby promoting T-cell activation and/or function. However, the success rate of these checkpoint inhibitors currently remains around 50%, which means that half of the patients with advanced SCC experience no benefit from this treatment. This review will highlight the mechanisms by which the immune checkpoint molecules regulate the tumor microenvironment (TME), as well as the ongoing clinical trials that are employing single or combinatory therapeutic approaches for SCC immunotherapy. We also discuss the regulation of additional pathways that might promote superior therapeutic efficacy, and consequently provide increased survival for those patients that do not benefit from the current checkpoint inhibitor therapies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wang Xie ◽  
NaNa Hu ◽  
LeJie Cao

Immune checkpoint inhibitors (ICIs), including antibodies targeting programmed cell death protein-1 (PD-1) and programmed cell death ligand-1 (PD-L1), are being extensively used on advanced human malignancies therapy. The treatment with ICIs have acquired durable tumor inhibition and changed the treatment landscape in lung cancer. Immune-related adverse events including pneumonitis and thyroiditis have been well described, but less frequent events, such as ICIs-induced thrombocytopenia, are now emerging and may sometimes be severe or fatal. Since early detection and prompt intervention are crucial to prevent fatal consequences, it is of outmost importance that medical staff is aware of these potential toxicities and learn to recognize and treat them adequately. This review focuses on the epidemiology, clinical presentation, mechanisms, and clinical management of ICIs-induced thrombocytopenia in patients with lung cancer. We also present a patient with advanced lung adenocarcinoma who received the PD-L1 inhibitor atezolizumab and eventually developed severe thrombocytopenia. The case indirectly suggests that cytokine changes might contribute to immune dysregulation in ICIs-induced thrombocytopenia.


BMJ ◽  
2020 ◽  
pp. m736 ◽  
Author(s):  
Karmela K Chan ◽  
Anne R Bass

Abstract Immune checkpoint inhibitors (ICIs) are monoclonal antibodies that target inhibitory molecules, such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), programmed cell death protein 1 (PD-1), or its ligand, programmed cell death protein ligand 1 (PD-L1), and lead to immune activation in the tumor micro-environment. ICIs can induce durable treatment responses in patients with advanced cancers, but they are commonly associated with immune related adverse events (irAEs) such as rash, colitis, hepatitis, pneumonitis, and endocrine and musculoskeletal disorders. Almost all patients experience some form of irAE, but high grade irAEs occur in approximately half of those on combination therapy (eg, anti-CTLA-4 plus anti-PD-1), and up to one quarter receiving ICI monotherapy. Fatal irAEs occur in approximately 1.2% of patients on CTLA-4 blockade and 0.4% of patients receiving PD-1 or PD-L1 blockade, and case fatality rates are highest for myocarditis and myositis. IrAEs typically occur in the first three months after ICI initiation, but can occur as early as one day after the first dose to years after ICI initiation. The mainstay of treatment is with corticosteroids, but tumor necrosis factor inhibitors are commonly used for refractory irAEs. Although ICIs are generally discontinued when high grade irAEs occur, ICI discontinuation alone is rarely adequate to resolve irAEs. Consensus guidelines have been published to help guide management, but will likely be modified as our understanding of irAEs grows.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Julian A. Marin-Acevedo ◽  
ErinMarie O. Kimbrough ◽  
Yanyan Lou

AbstractThe immune system is the core defense against cancer development and progression. Failure of the immune system to recognize and eliminate malignant cells plays an important role in the pathogenesis of cancer. Tumor cells evade immune recognition, in part, due to the immunosuppressive features of the tumor microenvironment. Immunotherapy augments the host immune system to generate an antitumor effect. Immune checkpoints are pathways with inhibitory or stimulatory features that maintain self-tolerance and assist with immune response. The most well-described checkpoints are inhibitory in nature and include the cytotoxic T lymphocyte-associated molecule-4 (CTLA-4), programmed cell death receptor-1 (PD-1), and programmed cell death ligand-1 (PD-L1). Molecules that block these pathways to enhance the host immunologic activity against tumors have been developed and become standard of care in the treatment of many malignancies. Only a small percentage of patients have meaningful responses to these treatments, however. New pathways and molecules are being explored in an attempt to improve responses and application of immune checkpoint inhibition therapy. In this review, we aim to elucidate these novel immune inhibitory pathways, potential therapeutic molecules that are under development, and outline particular advantages and challenges with the use of each one of them.


Author(s):  
Lavanya Kondapalli ◽  
Theresa Medina ◽  
Daniel W Groves

Abstract Immuno-oncology employs various therapeutic strategies that harness a patient’s own immune system to fight disease and has been a promising new strategy for cancer therapy over the last decade. Immune checkpoint inhibitors (ICI), are monoclonal antibodies, that increase antitumor immunity by blocking intrinsic down-regulators of immunity, such as cytotoxic T-lymphocyte antigen 4 (CTLA-4) and programmed cell death 1 (PD-1) or its ligand, programmed cell death ligand 1 (PD-L1). Seven ICIs are currently approved by the Food and Drug Administration and have increased the overall survival for patients with various cancer subtypes. These are used either as single agents or in combination with other checkpoint inhibitors, small molecular kinase inhibitors or cytotoxic chemotherapies. There are also many other immune modifying agents including other checkpoint inhibitor antibodies that are under investigation in clinical trials.


Biomedicines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1484
Author(s):  
Hiroyuki Ando ◽  
Kunihiro Suzuki ◽  
Toyoshi Yanagihara

Immune-checkpoint inhibitors (ICIs) targeting cytotoxic T-lymphocyte antigen 4 (CTLA-4), programmed cell death-1 (PD-1), and programmed cell death-1-ligand 1 (PD-L1) have become new treatment options for various malignancies. ICIs bind to immune-checkpoint inhibitory receptors or to the foregoing ligands and block inhibitory signals to release the brakes on the immune system, thereby enhancing immune anti-tumor responses. On the other hand, unlike conventional chemotherapies, ICIs can cause specific side effects, called immune-related adverse events (irAEs). These toxicities may affect various organs, including the lungs. ICI-related pneumonitis (ICI-pneumonitis) is not the most frequent adverse event, but it is serious and can be fatal. In this review, we summarize recent findings regarding ICI-pneumonitis, with a focus on potential pathogenesis and treatment.


2017 ◽  
Vol 312 (5) ◽  
pp. H1052-H1059 ◽  
Author(s):  
Ryu Watanabe ◽  
Hui Zhang ◽  
Gerald Berry ◽  
Jörg J. Goronzy ◽  
Cornelia M. Weyand

Giant cell arteritis (GCA) is a granulomatous vasculitis of the aorta and its medium-sized branch vessels. CD4 T cells, macrophages, and dendritic cells (DCs) build granulomatous infiltrates that injure the vessel wall and elicit a maladaptive response to injury. Pathological consequences include fragmentation of elastic membranes, destruction of the medial layer, microvascular neoangiogenesis, massive outgrowth of myofibroblasts, and lumen-occlusive intimal hyperplasia. Antigens have been suspected to drive the local activation of vasculitogenic CD4 T cells, but recent data have suggested a more generalized defect in the threshold setting of such T cells, rendering them hyperreactive. Under physiological conditions, immune checkpoints provide negative signals to curb T cell activation and prevent inflammation-associated tissue destruction. This protective mechanism is disrupted in GCA. Vessel wall DCs fail to express the immunoinhibitory ligand programmed cell death ligand-1, leaving lesional T cells unchecked. Consequently, programmed cell death protein-1-positive CD4 T cells can enter the immunoprivileged vessel wall, where they produce a broad spectrum of inflammatory cytokines (interferon-γ, IL-17, and IL-21) and have a direct role in driving intimal hyperplasia and intramural neoangiogenesis. The deficiency of the programmed cell death protein-1 immune checkpoint in GCA, promoting unopposed T cell immunity, contrasts with checkpoint hyperactivity in cancer patients in whom excessive programmed cell death ligand-1 expression paralyzes the function of antitumor T cells. Excessive checkpoint activity is the principle underlying cancer-immune evasion and is therapeutically targeted by immunotherapy with checkpoint inhibitors. Such checkpoint inhibitors, which unleash anticancer T cells and induce immune-related toxicity, may lead to drug-induced vasculitis.


Sign in / Sign up

Export Citation Format

Share Document