scholarly journals 757 Intratumoral delivery CD40 agonist antibody via novel nanofluidic drug-eluting seed reduced tumor burden of murine pancreatic ductal adenocarcinoma

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A805-A805
Author(s):  
Hsuan-Chen Liu ◽  
Dixita Viswanath ◽  
Robin Vander Pol ◽  
Corrine Chua ◽  
Alessandro Grattoni

BackgroundPancreatic adenocarcinoma (PDAC) is associated with extremely poor prognosis and a 5-year survival rate of 10% and remains a lethal malignancy. Surgical resection and combination with chemoradiotherapy are the current standard-of-care options, may improve long-term survival in localized disease; however, the majority of patients are diagnosed at advanced stage. The incorporation of immunotherapy in the treatment algorithm convenes a new era for PDAC treatment. Several immunotherapy approaches have been investigating for treating PDAC such as checkpoint inhibitors, vaccines, adoptive cell therapy, and so on. Immunotherapy has been shown as a promising therapeutic method for many cancer types; however, the complexity and immunosuppressive of the solid tumor microenvironment (TME) results in limited treatment efficacy for PDAC.MethodsTo sensitize the TME in response to immunotherapy, we developed an implantable intratumoral drug delivery device, Nanofluidic Drug-Eluting Seed (NDES) can be injected via a minimally invasive trocar system that feasible for the clinical setting. NDES has shown efficiently delivered immunotherapy to murine breast cancer model and reduced tumor burden and showed low liver inflammation compared to the intraperitoneal delivery approach in the previous study.1 2 Here, we utilized NDES for the sustained intratumoral delivery of the CD40 antibody. We compared the efficacy of NDES against intraperitoneal and intratumoral administration, which mimics conventional systemic treatment. Tumor growth was investigated for treatment efficacy. Local and systemic immune responses were assessed via flow cytometry.ResultsNDES delivered CD40 significantly reduced tumor burden, some even achieved tumor clearance. Local NDES CD40 delivery approach showed a systemic increase of CD8+ and CD4+ T cells in the tumor-draining lymph node and spleen by flow cytometry. Furthermore, NDES CD40 treated mice showed an increase of CD8+ and CD4+ central memory T cells locally and systemically. We also investigated the combination with radiotherapy, no significant difference in tumor burden was observed when compared to single-agent CD40 antibody. The results indicated CD40 promotes TME response and improved treatment efficacy.ConclusionsThese immunological responses demonstrate ‘cold’ to ‘hot’ tumor transformation, which translated to tumor burden reduction. Overall, NDES delivery strategy offers promise for enhancing therapeutic index and transforming the landscape of PDAC tumor therapy.ReferencesLiu H-C, Viswanath D, Pesaresi F, et al. Potentiating antitumor efficacy through radiation and sustained intratumoral delivery of anti-CD40 and anti-PDL1. Int J Radiat Oncol Biol Phys 2020;S0360-3016(20)33745-7.Chua CYX, Jain P, et al. Nanofluidic drug-eluting seed for sustained intratumoral immunotherapy in triple negative breast cancer. J Control Release 2018;285:23–34.

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A222-A222
Author(s):  
Elizabeth Stirling ◽  
Ethan Willey-Shelkey ◽  
Adam Wilson ◽  
Aleksander Skardal ◽  
Pierre Triozzi ◽  
...  

BackgroundImmune checkpoint blockade therapy targeting PD-L1 has recently been approved for metastatic triple negative breast cancer (TNBC) patients. However, a 7% response rate calls for better models and strategies to stimulate TN-tumor immunogenicity to increase patient response. Overexpression of the receptor CD47 impairs innate and adaptive tumor immunosurveillance when engaged to its counter receptor SIRPα or ligand thrombospondin-1. Co-expression of CD47 and PD-L1 is implicated with disease progression in TNBC patients. We examined through murine models and tumor organoid platforms whether targeting CD47 sensitizes TNBC tumors to PD-L1 therapy, focusing on the modulation of cellular bioenergetics as a potential mechanism and potentially predict response.MethodsThe effects of targeting CD47 and PD-L1 were examined through orthotopic syngenic 4T1 and EMT-6 TNBC murine models. Due to predicting patient therapeutic response challenges, tumor organoid platforms investigated mechanisms of tumor sensitization to anti-PD-L1 by targeting CD47. Organoids were constructed by embedding murine TNBC tumor tissue and AH1 CD8+ T cells in a specialized ECM mimicking hydrogel. Immunohistochemistry was performed on organoid, human and murine TNBC tumor tissue. Cellular bioenergetics was analyzed through Seahorse® bioanalyzer.ResultsStaining of human TNBC biopsies found elevated CD47 expression, signifying a potential therapeutic target. Targeting CD47 or in combination with anti-PD-L1 resulted in decreased tumor volume and weight in a TNBC murine model. The decrease in tumor burden was correlated with increased intratumoral granzyme B secreting CD8+ T cells. Additionally, targeting CD47 within organoids increased IFNγ and granzyme B released, indicating enhanced CD8+ T cell cytolytic capacity. Differential cellular bioenergetics was observed between cancer and T cells suggesting a shift in metabolism in the tumor microenvironment. CD47 targeted T cells had an increased glycolytic rate compared to WT T cells. Conversely CD47 targeted TNBC cells had a decreased glycolytic rate, which may be correlated with decreased PD-L1 expression.ConclusionsTargeting CD47 enhanced granzyme B and IFNγ expression suggesting potential mechanisms to increase tumor immunogenicity. CD47 targeted monotherapy or combination with anti-PD-L1 preserves T cell bioenergetics and antitumor function, resulting in decreased TNBC tumor burden. Alternatively, CD47 targeted TNBC had a decreased glycolytic rate and decreased PD-L1 expression, which is reported to regulate glycolysis through Akt/mTOR signaling. Targeting CD47 on T cells enhances their bioenergetics and antitumor function while decreasing TNBC cell bioenergetics, making them more susceptible to immune cell killing. Our data indicates that CD47 targeted monotherapy or combination with anti-PD-L1 may enhance TNBC patient response and improve overall survival.AcknowledgementsDSP and SS are supported by the Wake Forest Comprehensive Cancer Center Breast Cancer Center of Excellence Pilot Award. DSP is also supported by the ASTRO-BCRF Career Development Award (637969) while ERS is supported by NIGMS T32 (GM127261).Ethics ApprovalAnimal studies were approved by the Institutional Care and Use Committee, Wake Forest Health Sciences.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3464-3464
Author(s):  
Yang Song ◽  
Yu-tong Wang ◽  
Xiao-jun Huang ◽  
Yuan Kong

Abstract Background: Immune thrombocytopenia (ITP) is an immune-mediated disease that is characterized by excessive platelet destruction and decreased platelet production. Although antiplatelet antibodies are considered as the primary immunologic defect in ITP, dysfunctional cellular immunity is also important in the pathophysiology of ITP. The current publications have observed excessive activation and proliferation of platelet auto-antigen-reactive CTLs, production abnormal Th cells, abnormal numbers and function of Tregs in peripheral blood of ITP, but no one focus on the bone marrow (BM) micro-environment in ITP patients. Many cell types including osteoblastic, perivascular, endothelial cells, and various mature immune cells contribute to the BM micro-environment. We have recently reported that the impaired BM vascular micro-environment may affect the thrombopoiesis of CD34+ cells by disrupting the interaction between megakaryocytes and BM endothelial cells (BMECs), resulting in the delayed platelet engraftment in allotransplant patients with prolonged isolated thrombocytopenia (Kong Y, et al. Biol Blood Marrow Transplant. 2014; 20:1190-1197). In mice model, the cross-talk between megakaryocytes and BMECs in BM vascular micro-environment regulates the megakaryocyte maturation and thrombopoiesis. Therefore, we hypothesized that the abnormal BM vascular micro-environment and immune micro-environment may operate in the occurrence of ITP. Aims: To investigate whether abnormal BM vascular and immune micro-environment are involved in ITP patients. Methods: The compartments of BM immune micro-environment were analyzed by flow cytometry in 26 untreated ITP patients and 26 healthy donors (HD). The fractions of T cells, including Th1, Tc1,Th2, Tc2 ,Th17 and Treg were identified as CD3+ CD8- IFN-gama+, CD3+ CD8- IFN-gama+, CD3+ CD8+ IL4+, CD3+ CD8+ IL-4+, CD3+ CD8- IL17A+ and CD3+ CD4+ CD25+ Foxp3+, respectively. The BMECs and perivascular cells, acting as key elements of vascular micro-environment, were identified as CD45- CD34+ VEGFR2+ and CD45- CD34- CD146+, respectively. Hematoxylin-eosin (H&E) staining and immunohistochemistry (IHC) using rabbit anti-human CD34 and CD146 primary antibodies were performed on each BM trephine biopsies (BMB) derived from the patients and controls. Results: The proportion of Th1 cells and Tc1 cells among the bone marrow mononuclear cells (BMMNCs) was significantly increased in ITP patients compared to HD (27.7% ± 11.6% vs. 16.3% ± 7.7%, P<0.001; 39.8%±17.7% vs. 24.1%±11.8%, P<0.005), whereas there was no significant difference in the percentages of Th2 and Tc2 cells. In addition, the proportion of Th17 cells in ITP patients was remarkable higher than HD (3.2%±0.51%1.5%vs 1.7%±1.0%, P<0.0001). We also found the significantly decreased percentage of Treg in ITP patients compared to HD (2.5%±2.0% vs 3.7%±2.6%, P<0.001). However, the frequency of CD34+ cells as well as BMECs and perivascular cells were similar in BM between the ITP patients and HD. Consistent with our flow cytometry data, histological analysis of the recipient BMBs in situ showed no significant differences in CD34-positive BMECs and CD146-positive perivascular cells between ITP patients and HD. Summary/Conclusion: The BM CD34+ cells and vascular micro-environment were normal in ITP patients. However, the abnormal BM immune micro-environment, including the excessive polarization of Th1, Tc1 and Th17 cells and a remarkable decrease of Treg cells were observed in ITP patients. Our data indicated that the desregulated T cells responses in BM may abrogate the thrombopoiesis through the impaired megakaryocytes maturation and decreased platelet production, and eventually contributing to the occurrence of ITP. Acknowledgment: Supported by the National Natural Science Foundation of China (grant nos. 81370638&81230013), and the Beijing Municipal Science and Technology Program (grant nos. Z141100000214011& Z151100004015164& Z151100001615020). Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 806-806 ◽  
Author(s):  
Marco Ruella ◽  
Saad S Kenderian ◽  
Olga Shestova ◽  
Taylor Chen ◽  
John Scholler ◽  
...  

Abstract Hodgkin lymphoma (HL) generally carries a good prognosis. However, 10-15% of patients relapse or are refractory to first-line therapy. These patients have a poor prognosis and would benefit from innovative approaches. Our group and others have demonstrated the clinical efficacy of anti-CD19 chimeric antigen receptor redirected T cells (CART19, CTL019) for refractory B cell malignancies. Despite the B-cell origin of the malignant Hodgkin Reed-Sternberg (HRS) cells, B-cell antigens, in particular CD19, are typically not expressed in HL. We sought to define a HL-associated cell membrane antigen that could be targeted by CAR T cells. Given the relative paucity of the malignant cells and the importance of the immunosuppressive tumor microenvironment in HL, the ideal target would be expressed on neoplastic cells as well as on infiltrating immune cells in order to provide robust stimulation of the CAR T cells. Immunohistochemistry for novel HL targets on 10 patient samples revealed that 5/10 patients expressed CD123 on the HRS cells. CD123 was also seen on immune cells of the microenvironment in most samples. CD123 is the α chain of the receptor for interleukin-3 (IL-3), an important cytokine in hematopoietic growth and differentiation that has been previously shown to promote HL cell line growth (Aldinucci et al, Leuk & Lymph, 2005). As primary HL is non-engraftable in mice we turned to immortalized HL cell lines and confirmed that CD123 is expressed by flow cytometry and Q-PCR in four different HL cell lines (HDLM-2, KMH2, SUPHD1, and L428). To determine the role of IL-3 signaling in HL we engrafted NOD-SCID-γ-chain KO mice that overexpress human cytokines including IL-3 (NSG-S mice) with the luciferase-expressing HDLM-2 cell line. After i.v. injection, the neoplastic cells progressively formed disseminated soft tissue masses. Serial injections of a neutralizing anti-IL3 antibody slowed the growth of tumor, suggesting that CD123 may be a particularly relevant target in HL. We therefore sought to investigate the utility of anti-CD123 CAR T cells (CART123) for the treatment of HL. We have recently described the activity of CART123 in human acute myeloid leukemia (Gill et al, Blood, 2014). Our construct is a 2nd generation CAR, comprising 4-1BB co-stimulatory and CD3-ζ chain signaling domains with an anti-CD123 scFv. In vitro, CART123 specifically degranulate, proliferate, produce cytokines and kill HL cells (Table 1). Moreover, long-term co-culture (20 days) of CART123 with HDLM-2 cells at a 1:1 ratio led to T cell proliferation and complete elimination of HL cells by day 4. To confirm these in vitro data, we developed a rigorous in vivo model injecting 1 million luciferase+ HDLM-2 cells i.v. on day 0. Serial bioluminescent imaging (BLI) demonstrated low level of tumor on day 7, which was followed by gradual increase in tumor burden over approximately 6 weeks, reproducing the indolent nature of the human disease. At day 43 when the tumor burden was 20-fold higher than baseline, mice were treated with 1.5 million CART123 cells or control T cells. CART123 induced complete and durable eradication of disseminated tumor within 14 days, leading to 100% relapse-free and 100% overall survival at 6 months (Figure 1 and 2). Tumor elimination was associated with extensive CAR T cell expansion as detected by flow cytometry in serial peripheral blood bleedings. In summary, we show for the first time that human CD123-redirected T cells display potent therapeutic activity against disseminated HL. We have previously demonstrated that CART123 lead to myelosuppression, suggesting that our findings could be translated to treat patients with refractory HL with a combined CART123 and rescue autologous bone marrow transplantation. Table 1 In vitro activity of CART123 compared to untransduced control T cells (UTD) against a HL cell line (HDLM-2). IN VITRO EXPERIMENT CART123* UTD CD107a Degranulation (4 hrs, E:T = 1:5) 59.3% 2.69% Specific Killing (24 hrs) E:T = 2:1 57% 5% E:T = 0.25:1 27% 1% Proliferating cells (CFSE based) (5 days, E:T = 1:1) 96.4% 20% Cytokine production (24 hrs, E:T = 1:1) (Luminex, MFI) INF-γ 38,265 42 IL-2 85,604 0 TNF-α 10,684 55 MIP-1β 40,038 111 IL-6 16,425 110 GM-CSF 99,915 285 *All P values are <0.05 when compared to UTD Figure 2 Figure 2. Disclosures Ruella: Novartis: Research Funding. Kenderian:Novartis: Research Funding. Shestova:Novartis: Research Funding. Chen:Novartis: Research Funding. Scholler:Novartis: Research Funding. June:Novartis: Patents & Royalties, Research Funding. Gill:Novartis: Research Funding.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jing Li ◽  
Shengqi Wang ◽  
Neng Wang ◽  
Yifeng Zheng ◽  
Bowen Yang ◽  
...  

Abstract Background Metastasis represents the leading cause of death in patients with breast cancer. Traditional Chinese medicine is particularly appreciated for metastatic diseases in Asian countries due to its benefits for survival period prolongation and immune balance modulation. However, the underlying molecular mechanisms remain largely unknown. This study aimed to explore the antimetastatic effect and immunomodulatory function of a clinical formula Aiduqing (ADQ). Methods Naive CD4+ T cells, regulatory T cells (Tregs), and CD8+ T cells were sorted by flow cytometry. Then, breast cancer cells and these immune cells were co-cultured in vitro or co-injected into mice in vivo to simulate their coexistence. Flow cytometry, ELISA, qPCR, double luciferase reporter gene assay, and chromatin immunoprecipitation assay were conducted to investigate the immunomodulatory and antimetastatic mechanisms of ADQ. Results ADQ treatment by oral gavage significantly suppressed 4T1-Luc xenograft growth and lung metastasis in the orthotopic breast cancer mouse model, without noticeable hepatotoxicity, nephrotoxicity, or hematotoxicity. Meanwhile, ADQ remodeled the immunosuppressive tumor microenvironment (TME) by increasing the infiltration of tumor-infiltrating lymphocytes (TILs) and cytotoxic CD8+ T cells, and decreasing the infiltration of Tregs, naive CD4+ T cells, and tumor-associated macrophages (TAMs). Molecular mechanism studies revealed that ADQ remarkably inhibited CXCL1 expression and secretion from TAMs and thus suppressed the chemotaxis and differentiation of naive CD4+ T cells into Tregs, leading to the enhanced cytotoxic effects of CD8+ T cells. Mechanistically, TAM-derived CXCL1 promoted the differentiation of naive CD4+ T cells into Tregs by transcriptionally activating the NF-κB/FOXP3 signaling. Lastly, mouse 4T1-Luc xenograft experiments validated that ADQ formula inhibited breast cancer immune escape and lung metastasis by suppressing the TAM/CXCL1/Treg pathway. Conclusions This study not only provides preclinical evidence supporting the application of ADQ in inhibiting breast cancer metastasis but also sheds novel insights into TAM/CXCL1/NF-κB/FOXP3 signaling as a promising therapeutic target for Treg modulation and breast cancer immunotherapy.


2021 ◽  
Author(s):  
Lina Geng ◽  
Jun Yang ◽  
Xinyi Tang ◽  
Huiyong Peng ◽  
Jie Tian ◽  
...  

Abstract Background: Signaling lymphocytic activation molecule (SLAM) and SLAM-associated protein (SAP) play important role in inflammatory and autoimmune diseases. Our study aimed to detect the expression of SLAM and SAP in patients with Graves’ disease (GD) and analyze the effect of SLAM/SAP on circulating blood CD4+CXCR5+ Foxp3+ follicular regulatory T (Tfr) cells.Methods: The expression of SLAM and SAP was assessed by flow cytometry and real-time PCR. The percentages of IFN-γ+ cells, IL-4+ cells, IL-17+ cells and Foxp3+ cells in CD4+CXCR5+ T cells and circulating CD4+CXCR5+ Foxp3+ Tfr cells after treatment with anti-SLAM and anti-CD3 antibodies were also assessed by flow cytometry. The correlations between the percentages of Tfr cells and the levels of autoantibodies as well as SAP were analyzed.Results: The level of SAP in CD4+CXCR5+ T cells and the level of SLAM on CD19+ B cells were significantly increased in the patients with GD, but no significant difference in the level of SLAM on CD4+CXCR5+ T cells was observed between the patients with GD and the healthy controls. A decrease in the percentage of Foxp3+ cells in CD4+CXCR5+ T cells was observed following anti-SLAM treatment, but the percentages of IFN-γ+ cells, IL-4+ cells and IL-17+ cells showed no obvious differences. The proportion of circulating Tfr cells was decreased in the patients with GD, and the proportion of circulating Tfr cells had a negative correlation with the level of SAP in CD4+CXCR5+ T cells and the levels of autoantibodies in the serum of the patients with GD.Conclusions: Our results indicate that the SLAM/SAP signaling pathway regulates Tfr cells, which may be involved in the pathogenesis of Graves’ disease.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4761-4761
Author(s):  
Harold O. Longe ◽  
Anupama Sinha ◽  
Douglas V. Faller ◽  
Gerald V. Denis

Abstract We continue to develop and extend our novel adjuvant therapy approach to lymphoid malignancy. We supplement CHOP with DNA oligonucleotides that mimic the chromosomal telomere, which we call a “T oligo.” These agents are homologous to the 3′ overhang nucleotide sequence of telomeres and have previously been shown to have anti-tumor activity in animal models of malignant melanoma and breast cancer. They are currently being evaluated in melanoma and breast cancer patients. If introduced into human or murine normal, proliferating primary B cells or T cells, T oligo causes transient cell cycle arrest, while exerting no toxicity, but if introduced into human or murine malignant B cells or T cells, the arrest is followed by p53 phosphorylation, p21 message induction and ultimately p53-dependent apoptosis. Other p53-related effector molecules, such as p73, are also likely to be involved. The mechanism immediately suggests a novel method of chemotherapy for leukemia and lymphoma as an adjuvant with CHOP. Furthermore, we have previously shown with in vitro assay and in vivo mouse models of diffuse large B cell lymphoma (DLCL) that T oligo produces a more-than-additive toxicity towards lymphoma cells when combined with vincristine. T oligo alone or in combination with sub-therapeutic doses of CHOP, the standard of care for DLCL, dramatically reduced lymphoma burden in spleen, lung, bone marrow and peritoneum. In combination, which we refer to as T-CHOP, there was a greater reduction in tumor burden than with either therapy alone. We now show in SCID mouse xenograft models of human T cell malignancies, using a Jurkat T cell leukemic line or a MOLT-4 T cell leukemic line that T oligo also works alone to reduce tumor burden dramatically and increase survival. Interestingly, because T oligo-driven apoptosis occurs in p53-null, human lymphoid tumors, even chemotherapy-resistant lymphoid tumors are nevertheless sensitive to T oligo treatment, which may have profound benefit for relapsed leukemia or lymphoma patients.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A741-A741
Author(s):  
Ye Liu ◽  
Beibei Jiang ◽  
Tong Zhang ◽  
Zuobai Wang ◽  
Yingcai Feng ◽  
...  

BackgroundOX40 is a member of the tumor necrosis factor receptor super family (TNFRSF) primarily expressed on activated CD4+ and CD8+ T cells, as well as natural killer (NK) T and NK cells. It is an immune costimulatory receptor which binds to its ligand OX40L and activates downstream NF-κB pathway to induce immune cell activation, proliferation, and survival.1–3 Current agonistic anti-OX40 antibodies in clinic, which are mostly ligand-competitive antibodies, showed limited clinical responses, mainly at lower doses. Blockade of OX40-OX40L interaction might limit the efficacy of these ligand-competitive antibodies at higher doses, as OX40-OX40L interaction is essential for enhancing effective anti-tumor immunity. Here we report pre-clinical data of BGB-A445, which is a ligand non-blocking agonistic anti-OX40 humanized antibody.MethodsCell-based flow cytometry assay was established to determine whether BGB-A445 interferes with OX40-OX40L interaction. Co-crystal structure of OX40/BGB-A445 Fab was solved to study the molecular binding mechanism. A mixed lymphocyte reaction (MLR) assay was set up to investigate the ability of BGB-A445 to activate CD4+ T-cells. The anti-tumor efficacy of BGB-A445 was evaluated in MC38 colon cancer and CT26WT colon cancer models either as a single agent or in combination with anti-PD-1 antibody.ResultsThe flow cytometry study showed that BGB-A445 did not interfere with the binding of OX40 to OX40L even at high concentrations. In contrast, MOXR0916, an anti-OX40 agonistic antibody developed by Genentech, completely blocked OX40 binding to OX40L. Additionally, the co-crystal structure of OX40/BGB-A445 Fab complex indicated that BGB-A445 interacts with the CRD4 region of OX40 which is distant from OX40L binding region. In the MLR assay, combined with an anti-PD-1 antibody, BGB-A445 co-stimulated CD4+ T-cells to secrete IL-2 dose-dependently, while MOXR0916 did not. In the MC38 colon cancer model in human OX40 knock-in mice, BGB-A445 demonstrated remarkable anti-tumor efficacy in a dose-dependent manner, while MOXR0916 showed a ‘hook effect’ in the same setting. In addition, BGB-A445 exhibited significant anti-tumor activity in the PAN02 pancreatic model which is resistant to anti-PD-1 treatment. Besides, BGB-A445 revealed significant combination effects with anti-PD-1 therapy in both MC38 and CT26WT models.ConclusionsIn conclusion, differentiated from current clinical stage anti-OX40 antibodies, BGB-A445 is an agonistic antibody that does not block the OX40-OX40L interaction. Both in vitro and in vivo results demonstrated that BGB-A445 has remarkable immune stimulating effect and anti-tumor efficacy either as a single agent or in combination with anti-PD-1 therapy, thus warranting further clinical investigation.ReferencesCroft M. Control of immunity by the TNFR-related molecule OX40 (CD134). Annu Rev Immunol 2010;28:57–78.Gramaglia I, et al. Ox-40 ligand: a potent costimulatory molecule for sustaining primary CD4 T cell responses. J Immunol 1998;161:6510–6517.Song J, So T, Croft M. Activation of NF-kappaB1 by OX40 contributes to antigen-driven T cell expansion and survival. J Immunol 2008;180:7240–7248.


Author(s):  
Wenli Fang ◽  
Ting Zhou ◽  
He Shi ◽  
Mengli Yao ◽  
Dian Zhang ◽  
...  

Abstract Background Progranulin (PGRN), as a multifunctional growth factor, is overexpressed in multiple tumors, but the role of PGRN on tumor immunity is still unclear. Here, we studied the effect of PGRN on breast cancer tumor immunity and its possible molecular mechanism. Methods The changes of macrophage phenotypes after PGRN treatment were detected by western blot, quantitative polymerase chain reaction (PCR) and flow cytometry. Western blot was used to study the signal molecular mechanism of PGRN regulating this process. The number and localization of immune cells in Wild-type (WT) and PGRN−/− breast cancer tissues were analyzed by immunohistochemical staining and immunofluorescence techniques. The activation and proliferation of CD8+ T cells were measured by flow cytometry. Results After being treated with PGRN, the expressions of M2 markers and programmed death ligand 1 (PD-L1) on macrophages increased significantly. Signal transducer and activator of transcription 3 (STAT3) signaling pathway inhibitor Stattic significantly inhibited the expression of PD-L1 and M2 related markers induced by PGRN. In WT group, CD8 were co-localized with macrophages and PD-L1, but not tumor cells. The number of immune cells in PGRN−/− breast cancer tissue increased, and their infiltration into tumor parenchyma was also enhanced. Moreover, in the co-culture system, WT peritoneal macrophages not only reduced the ratio of activated CD8+ T cells but also reduced the proportion of proliferating CD8+ T cells. The addition of programmed death receptor 1 (PD-1) and PD-L1 neutralizing antibodies effectively reversed this effect and restored the immune function of CD8+ T cells. Conclusion These results demonstrate that PGRN promotes M2 polarization and PD-L1 expression by activating the STAT3 signaling pathway. Furthermore, through PD-1/PD-L1 interaction, PGRN can promote the breast tumor immune escape. Our research may provide new ideas and targets for clinical breast cancer immunotherapy.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xin Huang ◽  
Cunchuan Wang ◽  
Ningxia Wang

Abstract Background Breast cancer ranks second of new cases and fifth of death in 2018 worldwide. Cis-platinum (CDDP) has been used as a chemotherapy to treat breast cancer for years. However, CDDP can adversely disrupt immune function of host. Thus, development of new protocol that can minimize side effect and meanwhile elevate clinical efficacy of CDDP will eventually benefit cancer patients. Since Vγ9Vδ2 T cells can up-regulate immune function of cancer patients, therefore, our hypothesis is that introduction of Vγ9Vδ2 T cells could potentiate CDDP efficacy against breast cancer. Methods We used breast cancer cell line MDA-MB-231 as model cell to test our hypothesis. The cancer cell viability in vitro in the context of different dose of CDDP was analyzed by flow cytometry. The cytoskeleton alteration was visualized by confocal microscopy, and the ultrastructure of cell membrane was observed by atomic force microscopy. The mitochondrial function of MDA-MB-231 cells was detected as well by flow cytometry. Results Comparing to either Vγ9Vδ2 T cells or CDDP alone, Vγ9Vδ2 T cells plus CDDP could more strikingly induce MDA-MB-231 cell membrane ultrastructure disruption and cytoskeleton disorder, and more significantly enhance the inhibition of CDDP on proliferation of MDA-MB-231 cells. At the same time, Vγ9Vδ2 T cells strengthened CDDP-induced mitochondrial dysfunction of cancer cells. Conclusion This work revealed that Vγ9Vδ2 T cells could synergistically enhance the inhibition activity of CDDP against breast cancer cells. Meanwhile, this in vitro proof-of-concept study implied the clinical prospect of the combining application of Vγ9Vδ2 T cells and CDDP in breast cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document