scholarly journals 822 Local radiotherapy synergizes with tumor-specific TCR redirected T cells in the rejection of prostate cancer

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A872-A872
Author(s):  
Marco Catucci ◽  
Veronica Basso ◽  
Chiara Lucrezia Deantoni ◽  
Simone Baroni ◽  
Antonello Spinelli ◽  
...  

BackgroundAdoptive T cell therapy (ACT) has become a promising option for cancer patients. While tumor-infiltrating lymphocytes were initially exploited as a source of tumor reactive lymphocytes, T cells genetically redirected to the tumor by TCR/CAR gene transfer are now in clinical validation. In the case of solid tumors, unfavorable immunosuppressive microenvironments remain recognized barriers to therapeutic efficacy. We have recently reported that the therapeutic activity of ACT against poorly immunogenic and indolent prostate cancer is improved by the concurrent targeting of the tumor stroma by mean of T cells redirected to an ubiquitously expressed minor histocompatibility antigen or a tumor vessel targeted TNF derivative. We have now taken the concept further and hypothesized that local radiotherapy (RT), might also synergize with ACT by promoting lymphocyte endothelial transmigration and tumor recognition, and ultimately favor abscopal effects.MethodsWe investigated the combination of local RT and ACT in TRAMP (Transgenic Adenocarcinoma of the Mouse Prostate) mice and in mice bearing subcutaneous B16/B16-OVA (MO4) or TRAMP-C2/TRAMP-C2-OVA tumors. Local RT was delivered by X-RAD SmART (the Small Animal Radiation Therapy) microirradiator in single dose or hypo-fractioned regimens. ACT consisted of T cells engineered with tumor-specific TCRs. Immunogenic consequences were analyzed by Real-Time PCR, and flow cytometry (FACS) analyses. Prostate tumor debulking was evaluated by histological analyses.ResultsWe found that local hypofractionated RT and ACT, while individually inefficacious in controlling tumor growth, concurred to the debulking of advanced prostate adenocarcinoma when used in combination in treating TRAMP mice. Mechanistically, exposing isolated tumor cells, or the TRAMP mouse prostate to hypo-fractionated RT regimens induced stronger type-I interferon (IFN-I) responses, when compared to single high dose. Acutely, hypofractionated RT promoted better immune tumor infiltration, among which TCR redirected effector cells.ConclusionsData support feasibility and efficacy of combining hypo-fractionated local RT with ACT in the form of TCR engineered T cells to promote prostate cancer recognition and eradication. Tumor debulking was observed in the absence of treatment-related toxicity. Systemic recirculation of TCR redirected T cells was observed. We are now investigating therapeutic effects at distal (metastatic) sites.AcknowledgementsThe authors acknowledge the support of the Italian Association for Cancer Research (AIRC)Ethics ApprovalThe studies involving animals were approved by The Institutional Ethical Committee (IACUC#999).

2021 ◽  
Vol 218 (9) ◽  
Author(s):  
Keitaro Fukuda ◽  
Ken Okamura ◽  
Rebecca L. Riding ◽  
Xueli Fan ◽  
Khashayar Afshari ◽  
...  

The STING and absent in melanoma 2 (AIM2) pathways are activated by the presence of cytosolic DNA, and STING agonists enhance immunotherapeutic responses. Here, we show that dendritic cell (DC) expression of AIM2 within human melanoma correlates with poor prognosis and, in contrast to STING, AIM2 exerts an immunosuppressive effect within the melanoma microenvironment. Vaccination with AIM2-deficient DCs improves the efficacy of both adoptive T cell therapy and anti–PD-1 immunotherapy for “cold tumors,” which exhibit poor therapeutic responses. This effect did not depend on prolonged survival of vaccinated DCs, but on tumor-derived DNA that activates STING-dependent type I IFN secretion and subsequent production of CXCL10 to recruit CD8+ T cells. Additionally, loss of AIM2-dependent IL-1β and IL-18 processing enhanced the treatment response further by limiting the recruitment of regulatory T cells. Finally, AIM2 siRNA-treated mouse DCs in vivo and human DCs in vitro enhanced similar anti-tumor immune responses. Thus, targeting AIM2 in tumor-infiltrating DCs is a promising new treatment strategy for melanoma.


Leukemia ◽  
2021 ◽  
Author(s):  
Mohamed-Reda Benmebarek ◽  
Bruno L. Cadilha ◽  
Monika Herrmann ◽  
Stefanie Lesch ◽  
Saskia Schmitt ◽  
...  

AbstractTargeted T cell therapy is highly effective in disease settings where tumor antigens are uniformly expressed on malignant cells and where off-tumor on-target-associated toxicity is manageable. Although acute myeloid leukemia (AML) has in principle been shown to be a T cell-sensitive disease by the graft-versus-leukemia activity of allogeneic stem cell transplantation, T cell therapy has so far failed in this setting. This is largely due to the lack of target structures both sufficiently selective and uniformly expressed on AML, causing unacceptable myeloid cell toxicity. To address this, we developed a modular and controllable MHC-unrestricted adoptive T cell therapy platform tailored to AML. This platform combines synthetic agonistic receptor (SAR) -transduced T cells with AML-targeting tandem single chain variable fragment (scFv) constructs. Construct exchange allows SAR T cells to be redirected toward alternative targets, a process enabled by the short half-life and controllability of these antibody fragments. Combining SAR-transduced T cells with the scFv constructs resulted in selective killing of CD33+ and CD123+ AML cell lines, as well as of patient-derived AML blasts. Durable responses and persistence of SAR-transduced T cells could also be demonstrated in AML xenograft models. Together these results warrant further translation of this novel platform for AML treatment.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii111-ii111
Author(s):  
Lan Hoang-Minh ◽  
Angelie Rivera-Rodriguez ◽  
Fernanda Pohl-Guimarães ◽  
Seth Currlin ◽  
Christina Von Roemeling ◽  
...  

Abstract SIGNIFICANCE Adoptive T cell therapy (ACT) has emerged as the most effective treatment against advanced malignant melanoma, eliciting remarkable objective clinical responses in up to 75% of patients with refractory metastatic disease, including within the central nervous system. Immunologic surrogate endpoints correlating with treatment outcome have been identified in these patients, with clinical responses being dependent on the migration of transferred T cells to sites of tumor growth. OBJECTIVE We investigated the biodistribution of intravenously or intraventricularly administered T cells in a murine model of glioblastoma at whole body, organ, and cellular levels. METHODS gp100-specific T cells were isolated from the spleens of pmel DsRed transgenic C57BL/6 mice and injected intravenously or intraventricularly, after in vitro expansion and activation, in murine KR158B-Luc-gp100 glioma-bearing mice. To determine transferred T cell spatial distribution, the brain, lymph nodes, heart, lungs, spleen, liver, and kidneys of mice were processed for 3D imaging using light-sheet and multiphoton imaging. ACT T cell quantification in various organs was performed ex vivo using flow cytometry, 2D optical imaging (IVIS), and magnetic particle imaging (MPI) after ferucarbotran nanoparticle transfection of T cells. T cell biodistribution was also assessed in vivo using MPI. RESULTS Following T cell intravenous injection, the spleen, liver, and lungs accounted for more than 90% of transferred T cells; the proportion of DsRed T cells in the brains was found to be very low, hovering below 1%. In contrast, most ACT T cells persisted in the tumor-bearing brains following intraventricular injections. ACT T cells mostly concentrated at the periphery of tumor masses and in proximity to blood vessels. CONCLUSIONS The success of ACT immunotherapy for brain tumors requires optimization of delivery route, dosing regimen, and enhancement of tumor-specific lymphocyte trafficking and effector functions to achieve maximal penetration and persistence at sites of invasive tumor growth.


2015 ◽  
Vol 33 (14) ◽  
pp. 1543-1550 ◽  
Author(s):  
Sanja Stevanović ◽  
Lindsey M. Draper ◽  
Michelle M. Langhan ◽  
Tracy E. Campbell ◽  
Mei Li Kwong ◽  
...  

Purpose Metastatic cervical cancer is a prototypical chemotherapy-refractory epithelial malignancy for which better treatments are needed. Adoptive T-cell therapy (ACT) is emerging as a promising cancer treatment, but its study in epithelial malignancies has been limited. This study was conducted to determine if ACT could mediate regression of metastatic cervical cancer. Patients and Methods Patients enrolled onto this protocol were diagnosed with metastatic cervical cancer and had previously received platinum-based chemotherapy or chemoradiotherapy. Patients were treated with a single infusion of tumor-infiltrating T cells selected when possible for human papillomavirus (HPV) E6 and E7 reactivity (HPV-TILs). Cell infusion was preceded by lymphocyte-depleting chemotherapy and was followed by administration of aldesleukin. Results Three of nine patients experienced objective tumor responses (two complete responses and one partial response). The two complete responses were ongoing 22 and 15 months after treatment, respectively. One partial response was 3 months in duration. The HPV reactivity of T cells in the infusion product (as measured by interferon gamma production, enzyme-linked immunospot, and CD137 upregulation assays) correlated positively with clinical response (P = .0238 for all three assays). In addition, the frequency of HPV-reactive T cells in peripheral blood 1 month after treatment was positively associated with clinical response (P = .0238). Conclusion Durable, complete regression of metastatic cervical cancer can occur after a single infusion of HPV-TILs. Exploratory studies suggest a correlation between HPV reactivity of the infusion product and clinical response. Continued investigation of this therapy is warranted.


2005 ◽  
Vol 13 (1) ◽  
pp. 91-98 ◽  
Author(s):  
T Saika ◽  
N Kusaka ◽  
V Mouraviev ◽  
T Satoh ◽  
H Kumon ◽  
...  

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 2-3
Author(s):  
Junfang Yang ◽  
Pengfei Jiang ◽  
Xian Zhang ◽  
Jingjing Li ◽  
Yan Wu ◽  
...  

Introduction Multiple issues arise for a wider application of chimeric antigen receptor (CAR) T cell therapy including manufacturing time and antigen escape. Here we report data on an anti-CD19/CD22 dual CAR-T (GC022F) therapy based on a novel manufacturing platform, from a phase I clinical study (NCT04129099) in treating patients with B-cell acute lymphoblastic leukemia (B-ALL). Methods Peripheral blood (PB) mononuclear cells were obtained by leukapheresis. T-cells were separated and transduced with lentivirus that encodes a CD19/CD22 directed 4-1BB: ζ CAR. GC022F cells were manufactured using a novel FasTCARTM platform which takes 24 hours, while the conventional CD19/CD22 dual CAR-T (GC022C) cells used as parallel control in the preclinical study were manufactured by conventional process which typically takes 9-14 days. The phase I dose escalation study was initiated to explore the safety and efficacy of GC022F in patients with B-ALL. All patients received a conditioning regimen of IV fludarabine (25mg/m2/d) and cyclophosphamide (250mg/m2/d) for 3 days prior to GC022F infusion. Results When compared with the GC022C, GC022F cells showed 1) less exhaustion as indicated by lower percentage of PD-1+LAG3+ cells following co-culturing with tumor cells, 2) younger phenotypes as demonstrated by more abundant T central memory cells (Tcm; CCR7+CD45RA+ or CD45RO+CD62L+), 3) higher expansion fold at in vitro culture, and 4) high anti-leukemia efficacy in mice model (Fig.1). Comparing in vivo efficacy of GC022F with GC022C cells at lower doses, GC022F treatment were more potent and could reduce tumor burden earlier and faster, and led to significantly prolonged overall survival of the experimental animals. From Nov. 2019 to Jun. 2020, 9 children and 1 adult with B-ALL were enrolled and infused with GC022F, 2 in low-dose (6.0×104/kg), 7 in medium dose (1.0-1.5×105/kg), 1 in high-dose (2.25×105/kg). Patients' median observation time was 99 (14-210) days on the day of cut-off. Characteristics of enrolled patients are shown in Table 1. The median age was 10 (3-48) years, and the median bone marrow (BM) blasts were 21.0 (0.1-63.5) % at enrollment. Three patients had prior CD19 CAR-T cell therapy history and one of whom had prior allogeneic hematopoietic stem cell transplantation (allo-HSCT). After infusion, the median peak of circulating CAR-T cell copy number was 2.29 ×105 copies/µg genomic DNA (0.0014-5.66), which occurred around day 14 (day10 - day 28). Importantly, GC022F persisted well in PB with a median of 2.40×105 copies/µg genomic DNA (0.75-3.98) on day 28 in 5 of 9 patients with available 4 weeks of cellular kinetics data. GC022F exerted a superior safety profile with no observed grade ≥ 3 cytokine release syndrome (CRS) and neurotoxicity in all patients. Among those 6 patients with CRS, only 1 at high dose level had grade 2 CRS; only 1 developed grade 1 neurotoxicity. After GC022F infusion, 6/6 patients with BM blasts > 5% at enrollment achieved complete remission (CR) by day 28, 5/6 with minimal residual disease (MRD)-negative CR. For those 4 patients with MRD positive disease at enrollment, 3 became MRD-negative CR by day 28, 1 had persist MRD positive disease and withdrew from the study by 2 weeks. Five of 8 MRD-negative CR patients subsequently made a choice to pursue consolidation allo-HSCT with a median time interval of 57 (48-71) days post GC022F infusion and all have remained in MRD-negative CR except 1 died from graft-versus-host disease (GVHD) and infection 143 days post GC022F infusion. Of the other 3 patients without allo-HSCT, 2 relapsed with CD19+/CD22+ disease at 12-16 weeks follow-up, including the patient with prior history of CD19 CAR-T treatment and transplant. Conclusion This study demonstrated that anti-CD19/CD22 dual CAR T-cells could be successfully manufactured by FasTCARTM technology in 24 hours, with younger and less exhausted phenotypes. Moreover, the Dual FasTCAR-T cells showed more potent efficacy in xenograft mouse model compared to the conventional dual CAR-T cells. Our clinical data demonstrate that GC022F is safe and efficacious in treating patients with CD19+CD22+ B-ALL. More data on additional patients and longer observation time are needed to further evaluate CD19/CD22 dual FasTCAR-T cell product. Disclosures Cai: Gracell Biotechnologies Ltd: Current Employment. Wang:Gracell Biotechnologies Ltd: Current Employment. Chen:Gracell Biotechnologies Ltd: Current Employment. Ye:Gracell Biotechnologies Co., Ltd.: Current Employment. He:Gracell Biotechnologies Co., Ltd.: Current Employment. Cao:Gracell Biotechnologies Ltd: Current Employment. Sersch:Gracell Biotechnologies Co., Ltd.: Current Employment.


2021 ◽  
Author(s):  
Kristin G. Anderson ◽  
Shannon K. Oda ◽  
Breanna M. Bates ◽  
Madison G. Burnett ◽  
Magdalia Rodgers Suarez ◽  
...  

Background: In the U.S., more than 50% of ovarian cancer patients die within 5 years of diagnosis, highlighting the need for innovations such as engineered T cell therapies. Mesothelin (Msln) is an attractive immunotherapy target for this cancer, as it is overexpressed by the tumor and contributes to malignant and invasive phenotypes, making antigen loss disadvantageous to the tumor. We previously showed that adoptively transferred T cells engineered to be Msln-specific (TCR1045) preferentially accumulate within established ovarian tumors, delay tumor growth and significantly prolong survival in the ID8VEGF mouse model. However, T cell persistence and anti-tumor activity were not sustained, and we and others have previously detected FasL in the tumor vasculature and the tumor microenvironment (TME) of human and murine ovarian cancers, which can induce apoptosis in infiltrating lymphocytes expressing Fas receptor (Fas). Methods: To concurrently overcome this mechanism for potential immune evasion and enhance T cell responses, we generated an immunomodulatory fusion protein (IFP) containing the Fas extracellular binding domain fused to a 4-1BB co-stimulatory domain, rather than the natural death domain. T cells engineered to express TCR1045 alone or in combination with the IFP were transferred into ID8VEGF-tumor bearing mice and evaluated for persistence, proliferation, anti-tumor cytokine production, and therapeutic efficacy. Results: Relative to T cells modified only to express TCR1045, T cells engineered to express both TCR1045 and a Fas IFP preferentially persisted in the TME of tumor-bearing mice due to improved T cell proliferation and survival. Moreover, adoptive immunotherapy with IFP+ T cells significantly prolonged survival in tumor-bearing mice, relative to TCR1045 T cells lacking the IFP. Conclusions: Fas/FasL signaling can mediate T cell death in the ovarian cancer microenvironment, as well as induce activation-induced cell death, an apoptotic mechanism responsible for regulating T cell expansion. Upregulation of FasL by tumor cells and tumor vasculature represents a mechanism for protecting growing tumors from attack by tumor-infiltrating lymphocytes. As many solid tumors overexpress FasL, an IFP that converts the Fas-mediated death signal into pro-survival and proliferative signals may provide an opportunity to enhance engineered adoptive T cell therapy against many malignancies.


2015 ◽  
Vol 16 (1) ◽  
pp. 1 ◽  
Author(s):  
Zhenling Deng ◽  
Yanhong Wu ◽  
Wenbo Ma ◽  
Shuren Zhang ◽  
Yu-Qian Zhang

Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 696 ◽  
Author(s):  
Bianca Simon ◽  
Dennis C. Harrer ◽  
Beatrice Schuler-Thurner ◽  
Gerold Schuler ◽  
Ugur Uslu

Tumor cells can develop immune escape mechanisms to bypass T cell recognition, e.g., antigen loss or downregulation of the antigen presenting machinery, which represents a major challenge in adoptive T cell therapy. To counteract these mechanisms, we transferred not only one, but two receptors into the same T cell to generate T cells expressing two additional receptors (TETARs). We generated these TETARs by lentiviral transduction of a gp100-specific T cell receptor (TCR) and subsequent electroporation of mRNA encoding a second-generation CSPG4-specific chimeric antigen receptor (CAR). Following pilot experiments to optimize the combined DNA- and RNA-based receptor transfer, the functionality of TETARs was compared to T cells either transfected with the TCR only or the CAR only. After transfection, TETARs clearly expressed both introduced receptors on their cell surface. When stimulated with tumor cells expressing either one of the antigens or both, TETARs were able to secrete cytokines and showed cytotoxicity. The confirmation that two antigen-specific receptors can be functionally combined using two different methods to introduce each receptor into the same T cell opens new possibilities and opportunities in cancer immunotherapy. For further evaluation, the use of these TETARs in appropriate animal models will be the next step towards a potential clinical use in cancer patients.


Sign in / Sign up

Export Citation Format

Share Document