scholarly journals 784 BDC-2034: discovery of a CEA-targeting immune-stimulating antibody conjugate (ISAC) for solid tumors

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A819-A819
Author(s):  
William Mallet ◽  
Rishali Gadkari ◽  
Cecelia Pearson ◽  
Laughing Bear Torrez Dulgeroff ◽  
Angela Luo ◽  
...  

BackgroundCEA (CEACAM5) is a well-validated cell-surface antigen that is highly expressed in multiple solid tumors. Bolt's immune-stimulating antibody conjugates (ISACs) direct a TLR7/8 agonist into tumors to activate tumor-infiltrating myeloid cells and initiate a broad innate and adaptive anti-tumor immune response.1 The favorable properties of CEA, including robust cell surface expression, low internalization rate, and limited normal tissue expression, suggest that the antigen may be a suitable ISAC target. We are evaluating an anti-CEA ISAC, BDC-2034, as a multi-functional approach to treat CEA-expressing cancers.MethodsAnti-CEA antibodies were tested for binding affinity and specificity, CEA-targeted antibody-dependent cellular phagocytosis (ADCP), and myeloid-mediated tumor cell killing. Selected antibodies were conjugated to proprietary TLR7/8 agonists, and the resulting CEA ISACs were evaluated for in vitro myeloid activation and in vivo efficacy against xenograft tumors.ResultsAntibody CEA1 binds to the CEA protein with high affinity (EC50 = 0.25 nM), binds selectively to CEA-positive tumor cell lines, and mediates ADCP more efficiently than a reference anti-CEA antibody, labetuzumab (figure 1). We generated BDC-2034 by conjugating a potent TLR7/8 agonist to CEA1. BDC-2034 tumor cell binding drives myeloid effector cell ADCP, agonist delivery to TLR7 and TLR8 in endosomes, and secretion of cytokines critical for innate and adaptive immunity (including IL-12p70, CXCL10, and TNFa). In the HPAF II + cDC co-culture model, IL-12p70 is induced with EC50 = 1.2 nM, and the level of induction is at least ten-fold higher than with ISACs using labetuzumab (figure 2). Potent cellular activity is strictly dependent on tumor cell CEA expression; in whole blood, in the absence of CEA-expressing tumor cells, cytokine induction was only observed at approximately 100-fold higher concentrations. BDC-2034 inhibits the growth of HPAF II xenograft tumors in SCID/beige mice with a minimal efficacious dose (MED) of 1 mg/kg, demonstrating anti-tumor activity solely through innate immune activation (figure 3). The TLR7/8 agonist in BDC-2034 has relatively poor activity in mice; a surrogate CEA1 ISAC with a mouse TLR7-activating agonist achieved MED = 0.5 mg/kg in the HPAF II model, with eradication of all tumors at the 5 mg/kg dose.ConclusionsThese pre-clinical data demonstrate the potential of BDC-2034 to treat CEA-expressing human cancers. Most importantly, the antigen-dependent induction of immune-stimulating cytokines promises a robust immune response that combines the activation of innate and adaptive arms.ReferenceAckerman S, Pearson C, Gregorio J. Immune-stimulating antibody conjugates elicit robust myeloid activation and durable antitumor immunity. Nature Cancer 2021;2:18–33. https://doi.org/10.1038/s43018-020-00136-xAbstract 784 Figure 1ADCP. Anti-CEA antibody CEA1 is an efficient inducer of ADCP of Raji/CEA cells by M-CSF differentiated monocyte-derived macrophagesAbstract 784 Figure 2Tumor-dependent dendritic cell activation. BDC-2034 induces IL-12p70 secretion from primary dendritic cells (cDC); native CEA1 antibody and reference anti-CEA ISAC are ineffectiveAbstract 784 Figure 3Efficacy against xenograft tumors. BDC-2034 inhibits the growth of HPAF II tumors in SCID/beige mice; native CEA1 antibody and isotype ISAC are ineffective

2004 ◽  
Vol 11 (4) ◽  
pp. 686-690 ◽  
Author(s):  
Sarah L. Young ◽  
Mary A. Simon ◽  
Margaret A. Baird ◽  
Gerald W. Tannock ◽  
Rodrigo Bibiloni ◽  
...  

ABSTRACT The gut microbiota may be important in the postnatal development of the immune system and hence may influence the prevalence of atopic diseases. Bifidobacteria are the most numerous bacteria in the guts of infants, and the presence or absence of certain species could be important in determining the geographic incidence of atopic diseases. We compared the fecal populations of bifidobacteria from children aged 25 to 35 days in Ghana (which has a low prevalence of atopy), New Zealand, and the United Kingdom (high-prevalence countries). Natal origin influenced the detection of bifidobacterial species in that fecal samples from Ghana almost all contained Bifidobacterium infantis whereas those of the other children did not. Choosing species on the basis of our bacteriological results, we tested bifidobacterial preparations for their effects on cell surface markers and cytokine production by dendritic cells harvested from cord blood. Species-specific effects on the expression of the dendritic-cell activation marker CD83 and the production of interleukin-10 (IL-10) were observed. Whereas CD83 expression was increased and IL-10 production was induced by Bifidobacterium bifidum, Bifidobacterium longum, and Bifidobacterium pseudocatenulatum, B. infantis failed to produce these effects. We concluded that B. infantis does not trigger the activation of dendritic cells to the degree necessary to initiate an immune response but that B. bifidum, B. longum, and B. pseudocatenulatum induce a Th2-driven immune response. A hypothesis is presented to link our observations to the prevalence of atopic diseases in different countries.


2019 ◽  
Vol 12 (571) ◽  
pp. eaao7194 ◽  
Author(s):  
Isabel Wilhelm ◽  
Ella Levit-Zerdoun ◽  
Johanna Jakob ◽  
Sarah Villringer ◽  
Marco Frensch ◽  
...  

Bacterial lectins are typically multivalent and bind noncovalently to specific carbohydrates on host tissues to facilitate bacterial adhesion. Here, we analyzed the effects of two fucose-binding lectins, BambL fromBurkholderia ambifariaand LecB fromPseudomonas aeruginosa, on specific signaling pathways in B cells. We found that these bacterial lectins induced B cell activation, which, in vitro, was dependent on the cell surface expression of the B cell antigen receptor (BCR) and its co-receptor CD19, as well as on spleen tyrosine kinase (Syk) activity. The resulting release of intracellular Ca2+was followed by an increase in the cell surface abundance of the activation marker CD86, augmented cytokine secretion, and subsequent cell death, replicating all of the events that are observed in vitro upon canonical and antigen-mediated B cell activation. Moreover, injection of BambL in mice resulted in a substantial, BCR-independent loss of B cells in the bone marrow with simultaneous, transient enlargement of the spleen (splenomegaly), as well as an increase in the numbers of splenic B cells and myeloid cells. Together, these data suggest that bacterial lectins can initiate polyclonal activation of B cells through their sole capacity to bind to fucose.


1983 ◽  
Vol 158 (2) ◽  
pp. 265-279 ◽  
Author(s):  
K Bottomly ◽  
B Jones ◽  
J Kaye ◽  
F Jones

We have investigated in vitro the induction of antibody responses to phosphorylcholine (PC) by cloned T helper (Th) cell lines. The cloned Th cells are antigen specific, in this case ovalbumin (OVA), self-Ia recognizing, and induce antibody secretion only if the hapten, PC, is physically linked to the carrier (OVA) molecule. The plaque-forming cell (PFC) response generated in the presence of cloned Th cells is idiotypically diverse with 5-40% of the secreting B cells bearing the TEPC-15 (T15) idiotype. The interaction of the cloned Th cells and unprimed B cells requires recognition of B cell surface Ia glycoproteins for all B cells activated to secrete anti-PC antibody, whether they be T15-bearing or not. More importantly, however, effective interaction between a cloned Th cell and a B cell is determined by the quantity of B cell surface Ia glycoproteins. Our results indicate that quantitative differences in B cell surface Ia antigens are directly related to B cell activation by the cloned Th cell. The high Ia density B cells are most easily activated by cloned Th cells, and these appear to be mainly non-T15-bearing. These data suggest that the failure of cloned Th cells to effectively activate T15-bearing B cells in vitro may be due to the lower relative Ia density of these B cells and therefore to their inability to interact effectively with cloned Ia-recognizing Th cells. These results imply that monoclonal T cells may distinguish between T15-bearing and non-T15-bearing B cells based on their Ia density.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 1046.1-1046
Author(s):  
L. Schlicher ◽  
P. Kulig ◽  
M. Murphy ◽  
M. Keller

Background:Cenerimod is a potent, selective, and orally active sphingosine 1-phosphate receptor 1 (S1P1) modulator that is currently being evaluated in a Phase 2b study in patients with systemic lupus erythematosus (SLE) (NCT03742037). S1P1 receptor modulators sequester circulating lymphocytes within lymph nodes, thereby reducing pathogenic autoimmune cells (including B lymphocytes) in the blood stream and in inflamed tissues. Extensive clinical experience has become available for the nonselective S1P receptor modulator fingolimod in relapsing forms of multiple sclerosis, supporting this therapeutic concept for the treatment of autoimmune disorders.Objectives:Although the effect of S1P-receptor modulators in reducing peripheral B cells is well documented1,2, the role of the S1P1 receptor on this cell type is only incompletely understood. In this study, the mode of action of cenerimod on primary human B cells was investigated in a series of in vitro experiments, including S1P1 receptor cell surface expression and chemotaxis towards S1P. Moreover, S1P1 expression following B cell activation in vitro was studied. As glucocorticoids (GC) are frequently used in the treatment of patients with autoimmune disorders including SLE, the potential influence of GC on the mode of action of cenerimod was evaluated.Methods:Primary human B lymphocytes from healthy donors were isolated from whole blood. In one set of experiments, cells were treated with different concentrations of cenerimod to measure S1P1 receptor internalization by flow cytometry. In a second set of experiments, isolated B cells were activated using different stimuli or left untreated. Cells were then analysed for S1P1 and CD69 cell surface expression and tested in a novel real-time S1P-mediated migration assay. In addition, the effect of physiological concentrations of GCs (prednisolone and prednisone) on cenerimod activity in preventing S1P mediated migration was tested.Results:In vitro, cenerimod led to a dose-dependent internalization of the S1P1 receptor on primary human B lymphocytes. Cenerimod also blocked migration of nonactivated and activated B lymphocytes towards S1P in a concentration-dependent manner, which is in line with the retention of lymphocytes in the lymph node and the reduction of circulating lymphocytes observed in the clinical setting. Upon B cell activation, which was monitored by CD69 upregulation, a simultaneous downregulation of S1P1 expression was detected, leading to less efficient S1P-directed cell migration. Importantly, physiological concentrations of GC did not affect the inhibitory activity of cenerimod on B cell migration.Conclusion:These results show that cenerimod, by modulating S1P1, blocks B lymphocyte migration towards its natural chemoattractant S1P and demonstrate compatibility of cenerimod with GC. These results are consistent with results of comparable experiments done previously using primary human T lymphocytes.References:[1]Nakamura M et al., Mult Scler. 2014 Sep; 20(10):1371-80.[2]Strasser DS et al., RMD Open 2020;6:e001261.Disclosure of Interests:None declared


2021 ◽  
Vol 7 (4) ◽  
pp. 262
Author(s):  
Anuja Paudyal ◽  
Govindsamy Vediyappan

Candida auris is an emerging antifungal resistant human fungal pathogen increasingly reported in healthcare facilities. It persists in hospital environments, and on skin surfaces, and can form biofilms readily. Here, we investigated the cell surface proteins from C. auris biofilms grown in a synthetic sweat medium mimicking human skin conditions. Cell surface proteins from both biofilm and planktonic control cells were extracted with a buffer containing β-mercaptoethanol and resolved by 2-D gel electrophoresis. Some of the differentially expressed proteins were excised and identified by mass spectrometry. C. albicans orthologs Spe3p, Tdh3p, Sod2p, Ywp1p, and Mdh1p were overexpressed in biofilm cells when compared to the planktonic cells of C. auris. Interestingly, several proteins with zinc ion binding activity were detected. Nrg1p is a zinc-binding transcription factor that negatively regulates hyphal growth in C. albicans. C. auris does not produce true hypha under standard in vitro growth conditions, and the role of Nrg1p in C. auris is currently unknown. Western blot analyses of cell surface and cytosolic proteins of C. auris against anti-CalNrg1 antibody revealed the Nrg1p in both locations. Cell surface localization of Nrg1p in C. auris, an unexpected finding, was further confirmed by immunofluorescence microscopy. Nrg1p expression is uniform across all four clades of C. auris and is dependent on growth conditions. Taken together, the data indicate that C. auris produces several unique proteins during its biofilm growth, which may assist in the skin-colonizing lifestyle of the fungus during its pathogenesis.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A649-A649
Author(s):  
Fiore Cattaruzza ◽  
Ayesha Nazeer ◽  
Zachary Lange ◽  
Caitlin Koski ◽  
Mikhail Hammond ◽  
...  

BackgroundTCEs are effective in leukemias but have been challenging in solid tumors due to on-target, off-tumor toxicity. Attempts to circumvent CRS include step-up dosing and/or complex designs but are unsuccessful due to toxicity and/or enhanced immunogenicity. HER2-XPAT, or XTENylated Protease-Activated bispecific T-Cell Engager, is a prodrug TCE that exploits the protease activity present in tumors vs. healthy tissue to expand the therapeutic index (TI). The core of the HER2-XPAT (PAT) consists of 2 tandem scFvs targeting CD3 and HER2. Attached to the core, two unstructured polypeptide masks (XTEN) sterically reduce target engagement and extend T1/2. Protease cleavage sites at the base of the XTEN masks enable proteolytic activation of XPATs in the tumor microenvironment, unleashing a potent TCE with short T1/2, further improving the TI. HER2-XPAT, a tumor protease-activatable prodrug with wide safety margins, can co-opt T-cells regardless of antigenic specificity to induce T-cell killing of HER2+ tumors.MethodsPreclinical studies were conducted to characterize the activity of HER2-XPAT, HER2-PAT (cleaved XPAT), and HER2-NonClv (a non-cleavable XPAT) for cytotoxicity in vitro, for anti-tumor efficacy in xenograft models, and for safety in NHPs.ResultsHER2-PAT demonstrated potent in vitro T-cell cytotoxicity (EC50 1-2pM) and target-dependent T-cell activation and cytokine production by hPBMCs. HER2-XPAT provided up to 14,000-fold protection against killing of HER2 tumor cells and no cytotoxicity against cardiomyocytes up to 1uM. In vivo, HER2-XPAT induced complete tumor regressions in BT-474 tumors with equimolar dosing to HER2-PAT, whereas HER2-NonClv had no efficacy, supporting requirement of protease cleavage for T-cell activity. In NHP, HER2-XPAT has been dose-escalated safely up to 42mg/kg (MTD). HER2-XPAT demonstrated early T-cell margination at 2 mg/kg but largely spared CRS, cytokine production, and tissue toxicity up to 42 mg/kg. PK profiles of HER2-XPAT and HER2-NonClv were comparable, consistent with ex vivo stability for cleavage when incubated in cancer pts plasma for 7 days at 37°C. HER2-PAT by continuous infusion induced lethal CRS and cytokine spikes at 0.3 mg/kg/d but was tolerated at 0.25 mg/kg/d, providing HER2-XPAT with >1300-fold protection in tolerability vs. HER2-PAT, >4 logs over cytotoxicity EC50s for HER2 cell lines, and a 20-fold safety margin over the dose required for pharmacodynamic activity.ConclusionsHER2-XPAT is a potent prodrug TCE with no CRS and a wide TI based on NHPs. With XTEN’s clinical data demonstrating low immunogenicity, the XPATs are a promising solution. IND studies are ongoing. Additional PK/PD, cytokines, safety, and efficacy data will be presented.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e14544-e14544
Author(s):  
Son Tran ◽  
Satbir Thakur ◽  
Mohit Jain ◽  
Chunfen Zhang ◽  
Aru Narendran

e14544 Background: PV-10 (10% rose bengal disodium; 4,5,6,7-tetrachloro-2’,4’,5’,7’-tetraiodofluorescein) is a novel therapeutic agent previously shown to have potent anti-tumor activity following intratumoral injection in melanoma and refractory neuroblastoma, and currently is undergoing clinical testing as a single-agent for refractory metastatic neuroendocrine cancer (NCT02693067) and in combination with checkpoint inhibitors for metastatic melanoma (NCT02557321) and metastatic uveal melanoma (NCT00986661). Given the established clinical efficacy of PV-10 in adult melanoma and hepatic cancers via intratumoral injection, there is a need to evaluate the therapeutic potential of PV-10 in high-risk and refractory adult solid tumors via systemic administration. Our study aims to identify the clinical potential of systemically-delivered PV-10 by first generating prerequisite in vitro data for adult malignancies. Methods: Cytotoxicity assays were performed using the Alamar Blue assay to study the effects of PV-10 in vitro 96-hours post-treatment against a panel of adult solid tumor cell lines derived from breast (MCF-7, T-47D, MDA-MB-231), colorectal (HCT-116, LoVo, T-84), head and neck (CAL-27, Detroit-562, FaDu, UM-SCC-1), and testicular (NCC-IT, NTERA-2, TCAM-2) tissues. Light microscopy and Western blotting were used to investigate apoptosis induction and target modulation in tumor cells after PV-10 treatment. Results: In vitro results from our study demonstrate that PV-10 is cytotoxic at pharmacologically relevant concentrations across the indicated cell lines. Specifically, tumor cell lines originating from testicular tissues were highly sensitive to PV-10 treatment (Mean ± SD IC50: 37.5 ± 16.4 µM; n = 3) compared to breast (117.5 ± 71.0 µM; n = 3), colorectal (64.79 µM; n = 3), and head and neck (106.6 ± 29.2 µM; n = 4) cell lines. Western blot analyses showed dose- and time-dependent activation of pro-apoptotic protein markers in caspase-3 and PARP cleavage, indicating drug-induced apoptosis. Conclusions: This study provides the first pre-clinical results of PV-10 as a novel systemically-delivered therapeutic agent for a range of high-risk and refractory adult solid tumors. Data obtained from our in vitro experiments using a broad repertoire of cell lines that represent diverse molecular and phenotypic subtypes of solid tumors in adults can serve as prerequisite pre-clinical data to establish clinical testing in these populations.


2021 ◽  
Vol 11 ◽  
Author(s):  
Matylda Barbara Mielcarska ◽  
Magdalena Bossowska-Nowicka ◽  
Felix Ngosa Toka

Timely and precise delivery of the endosomal Toll-like receptors (TLRs) to the ligand recognition site is a critical event in mounting an effective antimicrobial immune response, however, the same TLRs should maintain the delicate balance of avoiding recognition of self-nucleic acids. Such sensing is widely known to start from endosomal compartments, but recently enough evidence has accumulated supporting the idea that TLR-mediated signaling pathways originating in the cell membrane may be engaged in various cells due to differential expression and distribution of the endosomal TLRs. Therefore, the presence of endosomal TLRs on the cell surface could benefit the host responses in certain cell types and/or organs. Although not fully understood why, TLR3, TLR7, and TLR9 may occur both in the cell membrane and intracellularly, and it seems that activation of the immune response can be initiated concurrently from these two sites in the cell. Furthermore, various forms of endosomal TLRs may be transported to the cell membrane, indicating that this may be a normal process orchestrated by cysteine proteases—cathepsins. Among the endosomal TLRs, TLR3 belongs to the evolutionary distinct group and engages a different protein adapter in the signaling cascade. The differently glycosylated forms of TLR3 are transported by UNC93B1 to the cell membrane, unlike TLR7, TLR8, and TLR9. The aim of this review is to reconcile various views on the cell surface positioning of endosomal TLRs and add perspective to the implication of such receptor localization on their function, with special attention to TLR3. Cell membrane-localized TLR3, TLR7, and TLR9 may contribute to endosomal TLR-mediated inflammatory signaling pathways. Dissecting this signaling axis may serve to better understand mechanisms influencing endosomal TLR-mediated inflammation, thus determine whether it is a necessity for immune response or simply a circumstantial superfluous duplication, with other consequences on immune response.


Sign in / Sign up

Export Citation Format

Share Document