scholarly journals Influence of ADRB2 Gln27Glu and ADRB3 Trp64Arg polymorphisms on body weight and body composition changes after a controlled weight-loss intervention

2016 ◽  
Vol 41 (3) ◽  
pp. 307-314 ◽  
Author(s):  
Barbara Szendrei ◽  
Domingo González-Lamuño ◽  
Teresa Amigo ◽  
Guan Wang ◽  
Yannis Pitsiladis ◽  
...  

The β-2 and β-3 adrenergic receptors (ADRB2 and ADRB3) are thought to play a role in energy expenditure and lipolysis. However, the effects of the ADRB2 glutamine (Gln) 27 glutamic acid (glutamate) (Glu) and ADRB3 tryptophan (Trp) 64 arginine (Arg) polymorphisms on weight loss remain controversial. The aim of this study was to investigate the effect of these polymorphisms on changes in weight and body composition during a controlled weight-loss program. One hundred seventy-three healthy overweight and obese participants (91 women, 82 men) aged 18–50 years participated in a 22-week-long intervention based on a hypocaloric diet and exercise. They were randomly assigned to 1 of 4 groups: strength, endurance, strength and endurance combined, and physical activity recommendations only. Body weight, body mass index (BMI), and body composition variables were assessed before and after the intervention. Genetic analysis was carried out according to standard protocols. No effect of the ADRB2 gene was shown on final weight, BMI, or body composition, although in the supervised male group, Glu27 carriers tended to have greater weight (p = 0.019, 2.5 kg) and BMI (p = 0.019, 0.88 kg/m2) reductions than did noncarriers. There seems to be an individual effect of the ADRB3 polymorphism on fat mass (p = 0.004) and fat percentage (p = 0.036), in addition to an interaction with exercise for fat mass (p = 0.038). After the intervention, carriers of the Arg64 allele had a greater fat mass and fat percentage than did noncarriers (p = 0.004, 2.8 kg). In conclusion, the ADRB2 Gln27Glu and ADRB3 Trp64Arg polymorphisms may influence weight loss and body composition, although the current evidence is weak; however, further studies are necessary to clarify their roles.

2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Yang Niu ◽  
Xue-lin Zhao ◽  
Hui-juan Ruan ◽  
Xiao-meng Mao ◽  
Qing-ya Tang

Abstract Background Current adult studies suggest that uric acid (UA) is associated with body fat, but the relationship in obese children is unclear. Thus, we aim to evaluate the association between uric acid and body composition of obese children. Methods A total of 79 obese children were included in this study, and 52 children (34 boys and 18 girls) underwent a 6-week weight loss camp, including 34 boys and 18 girls. Six-week weight-loss interventions were performed on all participants through aerobic exercise and appropriate dietary control. Laboratory tests and body composition were collected before and after the intervention. Results Before the intervention, correlation analysis demonstrated that uric acid was positively correlated with height, weight, body mass index (BMI), waist circumference, hip circumference, fat mass (FM), and free fat mass (FFM) with adjusting for age and gender (P < 0.05). After 6 weeks of intervention, the participants gained 3.12 ± 0.85 cm in height, body fat percentage decreased by 7.23 ± 1.97%, and lost 10.30 ± 2.83 kg in weight. Univariate and multivariate analysis indicated that uric acid at baseline was associated with FM reduction during weight loss (P < 0.05). Conclusions This study is the first report that uric acid is associated with BMI and FM, and may play an important role in the reduction of FM during weight loss in obese children and adolescents. The interaction between UA and adiposity factors and its underlying mechanisms need to be further explored. Trial registration This study was registered in Clinical Trials.gov (NCT03490448) and approved by the Ethics Committee of Xinhua Hospital, Shanghai Jiao Tong University School of Medicine.


2011 ◽  
Vol 21 (2) ◽  
pp. 97-104 ◽  
Author(s):  
Ina Garthe ◽  
Truls Raastad ◽  
Per Egil Refsnes ◽  
Anu Koivisto ◽  
Jorunn Sundgot-Borgen

When weight loss (WL) is necessary, athletes are advised to accomplish it gradually, at a rate of 0.5–1 kg/wk. However, it is possible that losing 0.5 kg/wk is better than 1 kg/wk in terms of preserving lean body mass (LBM) and performance. The aim of this study was to compare changes in body composition, strength, and power during a weekly body-weight (BW) loss of 0.7% slow reduction (SR) vs. 1.4% fast reduction (FR). We hypothesized that the faster WL regimen would result in more detrimental effects on both LBM and strength-related performance. Twenty-four athletes were randomized to SR (n = 13, 24 ± 3 yr, 71.9 ± 12.7 kg) or FR (n = 11, 22 ± 5 yr, 74.8 ± 11.7 kg). They followed energy-restricted diets promoting the predetermined weekly WL. All athletes included 4 resistance-training sessions/wk in their usual training regimen. The mean times spent in intervention for SR and FR were 8.5 ± 2.2 and 5.3 ± 0.9 wk, respectively (p < .001). BW, body composition (DEXA), 1-repetition-maximum (1RM) tests, 40-m sprint, and countermovement jump were measured before and after intervention. Energy intake was reduced by 19% ± 2% and 30% ± 4% in SR and FR, respectively (p = .003). BW and fat mass decreased in both SR and FR by 5.6% ± 0.8% and 5.5% ± 0.7% (0.7% ± 0.8% vs. 1.0% ± 0.4%/wk) and 31% ± 3% and 21 ± 4%, respectively. LBM increased in SR by 2.1% ± 0.4% (p < .001), whereas it was unchanged in FR (–0.2% ± 0.7%), with significant differences between groups (p < .01). In conclusion, data from this study suggest that athletes who want to gain LBM and increase 1RM strength during a WL period combined with strength training should aim for a weekly BW loss of 0.7%.


2018 ◽  
Vol 7 (2) ◽  
pp. 25-32
Author(s):  
Wayne Westcott ◽  
Amanda Colligan ◽  
Kelly Lannutti ◽  
Rita La Rosa Loud ◽  
Samantha Vallier

Background: Research indicates that weight loss programs are effective for reducing body weight temporarily, but weight maintenance studies have been almost uniformly unsuccessful in preventing weight regain. Methods: Subjects who completed a 6-month weight loss study were invited to continue with a weight maintenance program. The weight loss study examined the effects of exercise (20 min strength, 20 min aerobics, twice weekly) and nutrition (1,200 to 1,800 kcal·d−1, 2 daily meal replacement protein shakes) on body weight and body composition. Weight loss program completers experienced improvements (P &lt; 0.05) in body weight, percent fat, fat mass, lean mass, waist girth, and hip girth. Subjects who participated in the weight maintenance program performed the same strength and aerobic exercise protocol, but discontinued caloric restriction and decreased daily meal replacement protein shakes from 2 to 1. Results: After 6 months on the weight maintenance program, participants experienced improvement (P &lt; 0.05) in percent fat, fat mass, lean mass, waist girth, and hip girth, with no significant change in body weight. A subgroup of subjects who continued the weight maintenance program for an additional 3 months experienced additional improvement (P &lt; 0.05) in percent fat, fat mass, lean mass, waist girth, and hip girth, with no significant change in body weight. Conclusion: These findings indicated that a postdiet weight maintenance program incorporating 2 weekly resistance and aerobic exercise sessions coupled with a daily meal replacement protein shake was effective for avoiding weight regain and for improving body composition, with concurrent fat mass decrease and lean mass increase.


2020 ◽  
Vol 06 (03) ◽  
pp. 107-115
Author(s):  
Timotius I. Hariyanto ◽  
Andree Kurniawan

Abstract Introduction Cachexia in cancer patients, especially in advanced stage, is recently known as an emerging problem. Cachexia occurs in about half of all patients with neoplastic disease. The diagnosis of cachexia needs comprehensive evaluation of body weight and body composition for several months. Cachexia will give negative impacts such as increased mortality, chemotoxicity, and decreased quality of life. Here, we review the current evidence describing the definition, stages, mechanisms, diagnosis and treatment of cachexia in cancer patients. Methods We identified 75 studies and/or review articles evaluating cachexia and weight loss in cancer patients by searching PubMed and EMBASE databases. Results Cachexia is reported across all stages and types of cancers. The most recent definition of cachexia is reported in a 2011 paper by International Consensus. The mechanism of cachexia in cancer is complex and involved many factors which elaborate together to produce cachexia. The diagnostic evaluation and cut-off measurement of cachexia, especially in cancer varied across studies. The loss of weight that happens during chemotherapy will make a poor prognosis. Cachexia can worsen chemotherapy toxicity. Combination of dietary modification and exercise with supplementation of medication that control appetite and inflammation are important in the management of cachexia in cancer patients. Conclusion Patients with cancer are the population at risk for developing cachexia before and after chemotherapy. Cachexia diagnosis needs evaluation of body weight and body composition. Nonpharmacological treatments, such as dietary modification and physical exercise, are the best strategy to reduce cachexia in cancer patients.


2010 ◽  
Vol 2010 ◽  
pp. 1-4 ◽  
Author(s):  
H. Gin ◽  
V. Rigalleau ◽  
C. Perlemoine

Aims.To determine the progression of body weight (BW) and body composition (BC) in patients with type 2 diabetes mellitus (T2D) on insulin therapy and the consequences on muscle strength (MS) as a reflect of free fat mass increases.Research design and methods.We analysed BC using air displacement plethysmography and MS by hand grip dynamometry in 40 T2D before and after three (M3) and six months (M6) of insulin therapy.Results.at baseline HbA1c was 9.76±1.6% and BW was stable with fat mass (FM) 28±10.7 kg; and fat free mass (FFM) 52.4±11 kg; at M6, HbA1c improved to 7.56±0.8%; insulin doses tended to increase. BW gain at M6 was+3.2±4.2 kg and with an increase of only 25% by M3; it was composed of FM, whereas FFM was unchanged. MS did not increase on insulin therapy.Conclusions.In T2D, BW gain was composed exclusively of FM with no improvement in MS.


Nutrients ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2231
Author(s):  
Robinson Ramírez-Vélez ◽  
Mikel Izquierdo ◽  
Karem Castro-Astudillo ◽  
Carolina Medrano-Mena ◽  
Angela Liliana Monroy-Díaz ◽  
...  

The objectives of this secondary analysis are (1) to investigate the differential effects of exercise training modalities–high-intensity interval training (HIIT), resistance training (RT), combined training (CT = HIIT + RT), and/or nutritional guidance (NG) alone–on local fat/lean mass indexes in adults with excess of adiposity; (2) to identify the individual patterns of response based on either a clinical criterion of weight loss (≥5%) and/or technical error (TE) of measurement of local fat/lean mass indexes; and (3) to assess the individual change for body composition parameters assigned either to HIIT, RT, CT, and/or NG groups utilizing a TE. A 12-week trial was conducted in 55 participants randomized to one of the four interventions. The primary outcome was clinical change in body weight (i.e., weight loss of ≥5%). Secondary outcomes included change in ratio of android and gynoid fat mass, as well as local fat and lean mass indexes (arms, trunk, and legs), before and after intervention. The main findings from the current analysis revealed that (i) after 12 weeks of follow-up, significant decreases in several body composition indexes were found including body weight, arm, trunk, and legs fat mass, and android and gynecoid fat mass were observed in HIIT, RT, and CT groups (p < 0.05); (ii) a significant proportion of individuals showed a positive response following 12 weeks of training, led by the HIIT group with 44% and followed by RT with 39% in 9 indexes; (iii) the HIIT group showed lowest rates of adverse responders with (6%); and (iv) the individual patterns of response utilizing clinically meaningful weight loss were not necessarily associated with the corresponding individual training-induced changes in body composition indexes in adults with excess of adiposity. Overall, the study suggests that HIIT has an important ability to reduce the prevalence of non-response to improve body composition indexes.


2021 ◽  
pp. 1-9
Author(s):  
Reza Bagheri ◽  
Raoof Negaresh ◽  
Mohamad S. Motevalli ◽  
Alexei Wong ◽  
Damoon Ashtary-Larky ◽  
...  

Abstract We aimed to assess the effects of spirulina supplementation during gradual weight loss on serum concentrations of follistatin (FST), myostatin (MST), insulin-like growth factor 1 (IGF-1), aspartate aminotransferase (AST), alanine aminotransferase (ALT) and body composition in competitive wrestlers. Forty competitive wrestlers (age: 22 (sem 2) years) were randomly assigned to one of two groups: gradual weight loss + spirulina (SP; n 20) or gradual weight loss + placebo (PL; n 20). Subjects in both groups lost weight according to a designed diet over 12 d and were required to reduce baseline body mass (BM) by 4%. Subjects in the SP group received two tablets of spirulina, while subjects in the PL received two tablets of placebo before each meal. Concentrations of mentioned serum markers and body composition were measured before and after the interventions. BM (SP = −3·1 kg and PL = −2·9 kg), body fat percentage (BFP) (SP = −2·1 % and PL = −0·6 %), fat mass (FM) (SP = −2·2 kg and PL = −0·9 kg) and skeletal muscle mass (SP = −1·4 kg and PL = −1·5 kg) significantly decreased in both groups (P < 0·05). The changes in BFP and FM were significantly greater in SP compared with the PL group (P < 0·001). Additionally, MST (SP = −0·1 ng/ml), AST (SP = −2·1 u/l) and ALT (SP = −2·7 u/l) concentrations significantly diminished in SP group (P = 0·005), while FST (PL = −0·1 ng/ml) and IGF-1 (PL = −2·6 ng/ml) concentrations significantly decreased in PL group (P < 0·05). Spirulina supplementation during gradual weight loss is beneficial in reducing BFP, FM, MST and liver enzymes while maintaining IGF-1 and FST concentrations in competitive wrestlers.


2019 ◽  
Vol 106 (2) ◽  
pp. 140-150 ◽  
Author(s):  
P Szablics ◽  
K Orbán ◽  
S Szabó ◽  
M Dvorák ◽  
M Ungvári ◽  
...  

Introduction The quality and function of movements undergo deterioration due to weight gain. Aerobic training normalizes body weight, improves the health status, and in addition, it is expected to improve the dynamics of movements. The aims of this study were to prove the beneficial effects of recreational physical activities on the movements. Methods Participants were divided into five different age categories: second childhood, adolescence, mature age I, mature age II, and aging. Squatting and vertical jumping of the participants were measured at the beginning and at the end of a 5-month training program. These movements simulated ordinary daily movements. Changes in the body were determined by InBody230. APAS 3D system was used for movement analysis. Results The results showed significant improvements in body weight, fat mass, muscle mass, fat mass–body weight ratio, muscle mass–body weight ratio, body mass index, body fat percentage, and waist–hip ratio. During jumping, the lifting and sinking of the center of gravity’s (CG) position and its velocity and acceleration were improved. In case of squatting, the results showed significant improvements in the velocity and acceleration of dynamical characteristics of the CG. Other correlations were observed between changes in body composition and the dynamics of movements. Discussion The research proved that recreational training optimized body composition and improved the characteristics of CG’s dynamics. The study suggests considerable connection between body composition and the characteristics of the movements’ dynamics. From this point of view, our training program was the most effective in the working age groups.


2021 ◽  
pp. 1-27
Author(s):  
Masoome Piri Damaghi ◽  
Atieh Mirzababaei ◽  
Sajjad Moradi ◽  
Elnaz Daneshzad ◽  
Atefeh Tavakoli ◽  
...  

Abstract Background: Essential amino acids (EAAs) promote the process of regulating muscle synthesis. Thus, whey protein that contains higher amounts of EAA can have a considerable effect on modifying muscle synthesis. However, there is insufficient evidence regarding the effect of soy and whey protein supplementation on body composition. Thus, we sought to perform a meta-analysis of published Randomized Clinical Trials that examined the effect of whey protein supplementation and soy protein supplementation on body composition (lean body mass, fat mass, body mass and body fat percentage) in adults. Methods: We searched PubMed, Scopus, and Google Scholar, up to August 2020, for all relevant published articles assessing soy protein supplementation and whey protein supplementation on body composition parameters. We included all Randomized Clinical Trials that investigated the effect of whey protein supplementation and soy protein supplementation on body composition in adults. Pooled means and standard deviations (SD) were calculated using random-effects models. Subgroup analysis was applied to discern possible sources of heterogeneity. Results: After excluding non-relevant articles, 10 studies, with 596 participants, remained in this study. We found a significant increase in lean body mass after whey protein supplementation weighted mean difference (WMD: 0.91; 95% CI: 0.15, 1.67. P= 0.019). Subgroup analysis, for whey protein, indicated that there was a significant increase in lean body mass in individuals concomitant to exercise (WMD: 1.24; 95% CI: 0.47, 2.00; P= 0.001). There was a significant increase in lean body mass in individuals who received 12 or less weeks of whey protein (WMD: 1.91; 95% CI: 1.18, 2.63; P<0.0001). We observed no significant change between whey protein supplementation and body mass, fat mass, and body fat percentage. We found no significant change between soy protein supplementation and lean body mass, body mass, fat mass, and body fat percentage. Subgroup analysis for soy protein indicated there was a significant increase in lean body mass in individuals who supplemented for 12 or less weeks with soy protein (WMD: 1.48; 95% CI: 1.07, 1.89; P< 0.0001). Conclusion: Whey protein supplementation significantly improved body composition via increases in lean body mass, without influencing fat mass, body mass, and body fat percentage.


Sign in / Sign up

Export Citation Format

Share Document