scholarly journals Effect of exercise intensity and mode on acute appetite control in men and women

2016 ◽  
Vol 41 (10) ◽  
pp. 1083-1091 ◽  
Author(s):  
Valéria Leme Gonçalves Panissa ◽  
Ursula Ferreira Julio ◽  
Felipe Hardt ◽  
Carolina Kurashima ◽  
Fábio Santos Lira ◽  
...  

The aim of this study was to compare the effects of exercise intensity on appetite control: relative energy intake (energy intake minus the energy expenditure of exercise; REI), hunger scores, and appetite-regulating hormones in men and women. Eleven men and 9 women were submitted to 4 experimental sessions: high-intensity intermittent all-out exercise (HIIE-A) for 60 × 8 s interspersed by 12 s of passive recovery; high-intensity intermittent exercise (HIIE) at 100% of maximal load attained in incremental test; steady-state exercise at 60% of maximal load, matched by work done; and a control session. Exercise was performed 1.5 h after a standardized breakfast, and an ad libitum lunch was offered 4 h after breakfast. Blood concentration of insulin, cortisol, acylated ghrelin, peptideYY3-36, glucose, and hunger scores were measured when fasting, and at 1.5, 2, 3.25, and 4 h of experiment. REI was lower in all exercises than in the control, without differences between exercises and sex showing no compensation in energy intake because of any exercise; the hunger scores were lower only in the exercises performed at higher intensity (HIIE and HIIE-A) compared with the control. The area under the curve of acylated ghrelin was lower in the HIIE-A when compared with the control. PeptideYY3-36 was higher in men than women and cortisol higher in women than men independently of the condition. Although high-intensity exercises promoted a little more pronounced effects in the direction of suppressing the appetite, no differences were observed in REI, demonstrating that these modifications were not sufficient to affect energy intake.

2017 ◽  
Vol 235 (3) ◽  
pp. 193-205 ◽  
Author(s):  
Adrian Holliday ◽  
Andrew Blannin

The purpose of the study is to investigate the effect of acute bouts of high-intensity aerobic exercise of differing durations on subjective appetite, food intake and appetite-associated hormones in endurance-trained males. Twelve endurance-trained males (age = 21 ± 2 years; BMI = 21.0 ± 1.6 kg/m2; VO2max = 61.6 ± 6.0 mL/kg/min) completed four trials, within a maximum 28 day period, in a counterbalanced order: resting (REST); 15 min exercise bout (15-min); 30 min exercise bout (30-min) and 45 min exercise bout (45-min). All exercise was completed on a cycle ergometer at an intensity of ~76% VO2max. Sixty minutes post exercise, participants consumed an ad libitum meal. Measures of subjective appetite and blood samples were obtained throughout the morning, with plasma analyzed for acylated ghrelin, total polypeptide tyrosine-tyrosine (PYY) and total glucagon-like peptide 1 (GLP-1) concentrations. The following results were obtained: Neither subjective appetite nor absolute food intake differed between trials. Relative energy intake (intake – expenditure) was significantly greater after REST (2641 ± 1616 kJ) compared with both 30-min (1039 ± 1520 kJ) and 45-min (260 ± 1731 kJ), and significantly greater after 15-min (2699 ± 1239 kJ) compared with 45-min (condition main effect, P < 0.001). GLP-1 concentration increased immediately post exercise in 30-min and 45-min, respectively (condition × time interaction, P < 0.001). Acylated ghrelin was transiently suppressed in all exercise trials (condition × time interaction, P = 0.011); the greatest, most enduring suppression, was observed in 45-min. PYY concentration was unchanged with exercise. In conclusion, high-intensity aerobic cycling lasting up to 45 min did not suppress subjective appetite or affect absolute food intake, but did reduce relative energy intake, in well-trained endurance athletes. Findings question the role of appetite hormones in regulating subjective appetite in the acute post-exercise period.


2021 ◽  
pp. 003151252110073
Author(s):  
Lore Metz ◽  
Laurie Isacco ◽  
Maud Miguet ◽  
Pauline Genin ◽  
David Thivel ◽  
...  

Immersed exercise has been shown to induce higher energy expenditure and no difference or increase in food intake compared with similar exercise on land. In this study, we compared the effects of acute high-intensity cycling performed on land versus when immersed on subsequent energy intake (EI), appetite sensations and perceived exertion (RPE) in healthy men. Ten participants in a postprandial condition completed three experimental visits in a randomized order: a control condition (CONT); a high-intensity interval cycling exercise performed on land (HIIE-L) and the same exercise while immersed in water (HIIE-A) with a similar targeted heart rate. We observed no difference in energy and macronutrient intake and in area under the curve (AUC) for appetite sensations between sessions. The RPE at the end of HIIE-L was negatively correlated with EI (r=–0.67; p < 0.05), AUC for hunger (r=–0.86, p < 0.01), desire to eat (r=–0.78, p < 0.05) and prospective food consumption (r=–0.86, p < 0.01). Conversely, the RPE at the end of HIIE-L was positively correlated with AUC for fullness (r = 0.76 , p < 0.05). No such correlations were observed for HIIE-A. The present study was the first to observe that immersion did not influence EI after HIIE cycling, but immersion blunted the relationship between session RPE and subsequent energy intake and appetite sensations relative to HIIE on land.


Nutrients ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 893
Author(s):  
Chihiro Kojima ◽  
Nobukazu Kasai ◽  
Chika Kondo ◽  
Kumiko Ebi ◽  
Kazushige Goto

PURPOSE: The purpose of the present study was to investigate the effect of whole-body cryotherapy (WBC) treatment after exercise on appetite regulation and energy intake. METHODS: Twelve male athletes participated in two trials on different days. In both trials, participants performed high-intensity intermittent exercise. After 10 min following the completion of the exercise, they were exposed to a 3-min WBC treatment (−140 °C, WBC trial) or underwent a rest period (CON trial). Blood samples were collected to assess plasma acylated ghrelin, serum leptin, and other metabolic hormone concentrations. Respiratory gas parameters, skin temperature, and ratings of subjective variables were also measured after exercise. At 30 min post-exercise, energy and macronutrient intake were evaluated during an ad libitum buffet meal test. RESULTS: Although appetite-regulating hormones (acylated ghrelin and leptin) significantly changed with exercise (p = 0.047 for acylated ghrelin and p < 0.001 for leptin), no significant differences were observed between the trials. Energy intake during the buffet meal test was significantly higher in the WBC trial (1371 ± 481 kcal) than the CON trial (1106 ± 452 kcal, p = 0.007). CONCLUSION: Cold exposure using WBC following strenuous exercise increased energy intake in male athletes.


2019 ◽  
Vol 44 (5) ◽  
pp. 557-566 ◽  
Author(s):  
Penelope Larsen ◽  
Frank Marino ◽  
Kerri Melehan ◽  
Kym J. Guelfi ◽  
Rob Duffield ◽  
...  

The aim of this study was to compare the effect of high-intensity interval exercise (HIIE) and moderate-intensity continuous exercise (MICE) on sleep characteristics, appetite-related hormones, and eating behaviour. Eleven overweight, inactive men completed 2 consecutive nights of sleep assessments to determine baseline (BASE) sleep stages and arousals recorded by polysomnography (PSG). On separate afternoons (1400–1600 h), participants completed a 30-min exercise bout: either (i) MICE (60% peak oxygen consumption) or (ii) HIIE (60 s of work at 100% peak oxygen consumption: 240 s of rest at 50% peak oxygen consumption), in a randomised order. Measures included appetite-related hormones (acylated ghrelin, leptin, and peptide tyrosine tyrosine) and glucose before exercise, 30 min after exercise, and the next morning after exercise; PSG sleep stages; and actigraphy (sleep quantity and quality); in addition, self-reported sleep and food diaries were recorded until 48 h after exercise. There were no between-trial differences for time in bed (p = 0.19) or total sleep time (p = 0.99). After HIIE, stage N3 sleep was greater (21% ± 7%) compared with BASE (18% ± 7%; p = 0.02). In addition, the number of arousals during rapid eye movement sleep were lower after HIIE (7 ± 5) compared with BASE (11 ± 7; p = 0.05). Wake after sleep onset was lower following MICE (41 min) compared with BASE (56 min; p = 0.02). Acylated ghrelin was lower and glucose was higher at 30 min after HIIE when compared with MICE (p ≤ 0.05). There were no significant differences between conditions in terms of total energy intake (p ≥ 0.05). HIIE appears to be more beneficial than MICE for improving sleep quality and inducing favourable transient changes in appetite-related hormones in overweight, inactive men. However, energy intake was not altered regardless of exercise intensity.


2015 ◽  
Vol 27 (4) ◽  
pp. 503-509 ◽  
Author(s):  
Napasakorn Chuensiri ◽  
Hirofumi Tanaka ◽  
Daroonwan Suksom

Purpose:To determine the acute effects of high-intensity intermittent exercise (HIIE) on vascular function.Methods:Lean (n = 18, BMI = 17.1 ± 0.7) and obese (n = 17, BMI = 25.4 ± 0.8) prepubescent boys aged 10.2 ± 0.2 years were studied. HIIE consisted of 8 sets of 20 s of cycle ergometry at 100, 130, and 170% of VO2peak alternating with 10 s of rests.Results:The obese group had higher (p < .05) body mass, BMI, body fat percentage, waist-hip ratio than the lean group. Carotid artery wall thickness and arterial stiffness as assessed by brachial-ankle pulse wave velocity (baPWV) were greater in the obese than in the lean group (p < .05). Brachial artery flow-mediated dilation (FMD) was not different between the groups. Total energy expenditure increased gradually as the exercise intensity increased in both groups (p < .05). The obese group had significantly greater total energy expenditure in all three HIIE intensities than the lean group. FMD tended to be higher and baPWV lower as the exercise intensity increased in both groups. Only the HIIE at 170% demonstrated greater FMD compared with the baseline in both groups. baPWV decreased significantly after HIIE at 130 and 170% VO2peak in both groups.Conclusion:Supramaximal HIIE can be a feasible exercise modality for improving vascular function in obese prepubescent boys. Future exercise intervention studies are warranted.


Appetite ◽  
2019 ◽  
Vol 143 ◽  
pp. 104443 ◽  
Author(s):  
Valéria Leme Gonçalves Panissa ◽  
Ursula Ferreira Julio ◽  
David H. St-Pierre ◽  
Alícia Tavares da Silva Gomes ◽  
Renan Santos Caldeira ◽  
...  

2009 ◽  
Vol 203 (3) ◽  
pp. 357-364 ◽  
Author(s):  
Shin-ya Ueda ◽  
Takahiro Yoshikawa ◽  
Yoshihiro Katsura ◽  
Tatsuya Usui ◽  
Shigeo Fujimoto

There is growing interest in the effects of exercise on plasma gut hormone levels and subsequent energy intake (EI) but the effects of mode and exercise intensity on anorectic hormone profiles on subsequent EI remain to be elucidated. We aimed to investigate whether circulating peptide YY3–36 (PYY3–36) and glucagon-like peptide-1 (GLP-1 or GCG as listed in the HUGO Database) levels depend on exercise intensity, which could affect subsequent EI. Ten young male subjects (mean±s.d., age: 23.4±4.3 years, body mass index: 22.5±1.0 kg/m2, and maximum oxygen uptake (VO2 max): 45.9±8.5 ml/kg per min) received a standardized breakfast, which was followed by constant cycling exercise at 75% VO2 max (high intensity session), 50% VO2 max (moderate intensity session), or rest (resting session) for 30 min. At lunch, a test meal was presented, and EI was calculated. Blood samples were obtained during three sessions for measurements of glucose, insulin, PYY3–36, and GLP-1, which includes GLP-1 (7–36) amide and GLP-1 (9–36) amide. Increases in blood PYY3–36 levels were dependent on the exercise intensity (effect of session: P<0.001 by two-way ANOVA), whereas those in GLP-1 levels were similar between two different exercise sessions. Of note, increase in area under the curve values for GLP-1 levels was negatively correlated with decrease in the EI in each exercise session (high: P<0.001, moderate: P=0.002). The present findings raise the possibility that each gut hormone exhibits its specific blood kinetics in response to two different intensities of exercise stimuli and might play differential roles in regulation of EI after exercise.


Author(s):  
Tommy Slater ◽  
William J. A. Mode ◽  
John Hough ◽  
Ruth M. James ◽  
Craig Sale ◽  
...  

Abstract Purpose This study aimed to assess the effects of consuming a very-low-energy placebo breakfast on subsequent appetite and lunch energy intake. Methods Fourteen healthy males consumed water-only (WAT), very-low-energy, viscous placebo (containing water, low-calorie flavoured squash, and xanthan gum; ~ 16 kcal; PLA), and whole-food (~ 573 kcal; FOOD) breakfasts in a randomised order. Subjects were blinded to the energy content of PLA and specific study aims. Venous blood samples were collected pre-breakfast, 60- and 180-min post-breakfast to assess plasma acylated ghrelin and peptide tyrosine tyrosine concentrations. Subjective appetite was measured regularly, and energy intake was assessed at an ad libitum lunch meal 195-min post-breakfast. Results Lunch energy intake was lower during FOOD compared to WAT (P < 0.05), with no further differences between trials (P ≥ 0.132). Cumulative energy intake (breakfast plus lunch) was lower during PLA (1078 ± 274 kcal) and WAT (1093 ± 249 kcal), compared to FOOD (1554 ± 301 kcal; P < 0.001). Total area under the curve (AUC) for hunger, desire to eat and prospective food consumption were lower, and fullness was greater during PLA and FOOD compared to WAT (P < 0.05). AUC for hunger was lower during FOOD compared to PLA (P < 0.05). During FOOD, acylated ghrelin was suppressed compared to PLA and WAT at 60 min (P < 0.05), with no other hormonal differences between trials (P ≥ 0.071). Conclusion Consuming a very-low-energy placebo breakfast does not alter energy intake at lunch but may reduce cumulative energy intake across breakfast and lunch and attenuate elevations in subjective appetite associated with breakfast omission. Trial registration NCT04735783, 2nd February 2021, retrospectively registered.


2015 ◽  
Vol 50 (4) ◽  
pp. 392-399 ◽  
Author(s):  
Enda Whyte ◽  
Aoife Burke ◽  
Elaine White ◽  
Kieran Moran

Context Deficits in dynamic postural control predict lower limb injury. Differing fatiguing protocols negatively affect dynamic postural control. The effect of high-intensity, intermittent exercise on dynamic postural control has not been investigated. Objective To investigate the effect of a high-intensity, intermittent exercise protocol (HIIP) on the dynamic postural control of men and women as measured by the Star Excursion Balance Test (SEBT). Design Descriptive laboratory study. Setting University gymnasium. Patients or Other Participants Twenty male (age = 20.83 ± 1.50 years, height = 179.24 ± 7.94 cm, mass = 77.67 ± 10.82 kg) and 20 female (age = 20.45 ± 1.34 years, height = 166.08 ± 5.83 cm, mass = 63.02 ± 6.67 kg) athletes. Intervention(s) We recorded SEBT measurements at baseline, pre-HIIP, and post-HIIP. The HIIP consisted of 4 repetitions of 10-m forward sprinting with a 90° change of direction and then backward sprinting for 5 m, 2 repetitions of 2-legged jumping over 5 hurdles, 2 repetitions of high-knee side stepping over 5 hurdles, and 4 repetitions of lateral 5-m shuffles. Participants rested for 30 seconds before repeating the circuit until they reported a score of 18 on the Borg rating of perceived exertion scale. Main Outcome Measure(s) A mixed between- and within–subjects analysis of variance was conducted to assess time (pre-HIIP, post-HIIP) × sex interaction effects. Subsequent investigations assessed the main effect of time and sex on normalized maximal SEBT scores. We used intraclass correlation coefficients to determine the test-retest reliability of the SEBT and paired-samples t tests to assess the HIIP effect on circuit times. Results We found a time × sex effect (F8,69 = 3.5; P range, &lt;.001–.04; η2 range, 0.057–0.219), with women less negatively affected. We also noted a main effect for time, with worse normalized maximal SEBT scores postfatigue (F8,69 = 22.39; P &lt; .001; η2 range, 0.324–0.695), and for sex, as women scored better in 7 SEBT directions (F8,69 = 0.84; P range, &lt;.001–008; η2 range, 0.088–0.381). The intraclass correlation coefficients demonstrated high (0.77–0.99) test-retest repeatability. Paired-samples t tests demonstrated increases in circuit time post-HIIP (P &lt; .001). Conclusions The HIIP-induced fatigue negatively affected normalized maximal SEBT scores. Women had better scores than men and were affected less negatively by HIIP-induced fatigue.


2012 ◽  
Vol 112 (4) ◽  
pp. 552-559 ◽  
Author(s):  
Lucy K. Wasse ◽  
Caroline Sunderland ◽  
James A. King ◽  
Rachel L. Batterham ◽  
David J. Stensel

The reason for high altitude anorexia is unclear but could involve alterations in the appetite hormones ghrelin and peptide YY (PYY). This study examined the effect of resting and exercising in hypoxia (12.7% O2; ∼4,000 m) on appetite, energy intake, and plasma concentrations of acylated ghrelin and PYY. Ten healthy males completed four, 7-h trials in an environmental chamber in a random order. The four trials were control-normoxia, control-hypoxia, exercise-normoxia, and exercise-hypoxia. During exercise trials, participants ran for 60 min at 70% of altitude-specific maximal oxygen consumption (V̇o2max) and then rested. Participants rested throughout control trials. A standardized meal was consumed at 2 h and an ad libitum buffet meal at 5.5 h. Area under the curve values for hunger (assessed using visual analog scales) tended to be lower during hypoxic trials than normoxic trials (repeated-measures ANOVA, P = 0.07). Ad libitum energy intake was lower ( P = 0.001) in hypoxia (5,291 ± 2,189 kJ) than normoxia (7,718 ± 2,356 kJ; means ± SD). Mean plasma acylated ghrelin concentrations were lower in hypoxia than normoxia (82 ± 66 vs. 100 ± 69 pg/ml; P = 0.005) while PYY concentrations tended to be higher in normoxia (32 ± 4 vs. 30 ± 3 pmol/l; P = 0.059). Exercise suppressed hunger and acylated ghrelin and increased PYY but did not influence ad libitum energy intake. These findings confirm that hypoxia suppresses hunger and food intake. Further research is required to determine if decreased concentrations of acylated ghrelin orchestrate this suppression.


Sign in / Sign up

Export Citation Format

Share Document