Role of selected dark septate endophyte species and other hyphomycetes as saprobes on moss gametophytes

Botany ◽  
2011 ◽  
Vol 89 (5) ◽  
pp. 349-359 ◽  
Author(s):  
Melissa J. Day ◽  
Randolph S. Currah

Dark septate endophytes (DSEs) live asymptomatically in the roots of vascular plants, are common in arctic and alpine areas, and are thought to play a quasimycorrhizal role. It is not known, however, whether they precede or arrive with their hosts. Previously reported enzymatic abilities of Phialocephala fortinii suggest that DSEs can live on organic debris in the soil, but there is little direct or experimental evidence for this. Phialocephala fortinii , Leptodontidium orchidicola , Cadophora melinii , Cadophora luteo-olivacea , and Lecythophora sp. were inoculated onto autoclaved Hylocomium splendens gametophytes and incubated for 3 months to determine if they degrade this organic material based on observations made using light and scanning electron microscopy. All fungi were able to colonize the bryophyte tissue to some extent. Lecythophora sp. and L. orchidicola penetrated cells by forming bore holes. Cadophora luteo-olivacea and P. fortinii were also observed inside cells, but bore holes through bryophyte cell walls were not observed. Cadophora melinii sporulated and grew abundantly on the surface of gametophytes but did not appear to penetrate cell walls. Phialocephala fortinii and L. orchidicola formed sclerotia in the gametophytes similar to those formed in roots. These results suggest that DSE fungi can persist and produce propagules, i.e., sclerotia and conidia, in the absence of host roots. These observations support the hypothesis that DSE fungi are able to precede their hosts during primary succession events.

1989 ◽  
Vol 67 (2) ◽  
pp. 297-302 ◽  
Author(s):  
E. Benjavongkulchai ◽  
M. S. Spencer

The synthesis of barley (Hordeum vulgare L. cv. Himalaya) aleurone xylanase was found to be dependent on both gibberellic acid (GA3) and Ca2+, but inhibited by cycloheximide and cordycepin. Studies using density labeling of barley aleurone layers showed that xylanase was synthetized de novo in response to GA3 and Ca2+. Neither GA3 nor Ca2+ alone induced a large increase in xylanase activity. The concentration of Ca2+ required for maximum xylanase induction was 5 – 40 mM. Xylanase activity was found to develop simultaneously with that of α-amylase in the incubation medium during the first 24 h of incubation with GA3. A critical point with respect to the role of xylanase is the extent of its activity by the time of the initial release of α-amylase. The release of α-amylase into the medium was detectable at 6 h. From 2 to 6% of the cell wall was hydrolysed by xylanase after incubation for 6 h, which was probably sufficient to permit the release of α-amylase. Scanning electron microscopy showed that the purified barley aleurone xylanase hydrolysed the cell walls of barley aleurone layers in the absence of GA3. It is likely that xylanase plays an important role in the release of enzymes from aleurone cells.


Author(s):  
Douglas William Jones

Within the past 20 years, archaeobotanical research in the Eastern United States has documented an early agricultural complex before the dominance of the Mesoamerican domesticates (corn, beans, and squash) in late prehistoric and historic agricultural systems. This early agricultural complex consisted of domesticated plants such as Iva annua var.macrocarpa (Sumpweed or Marshelder), Hellanthus annuus (Sunflower) and Chenopodium berlandieri, (Goosefoot or Lasbsquarters), and heavily utilized plants such as Polygonum erectum (Erect Knotweed), Phalaris caroliniana (May grass), and Hordeum pusillum (Little Barley).Recent research involving the use of Scanning Electron Microscopy (SEM) specifically on Chenopodium has established diagnostic traits of wild and domesticated species seeds. This is important because carbonized or uncarbonized seeds are the most commonly recovered Chenopodium material from archaeological sites. The diagnostic seed traits assist archaeobotanists in identification of Chenopodium remains and provide a basis for evaluation of Chenopodium utilization in a culture's subsistence patterns. With the aid of SEM, an analysis of Chenopodium remains from three Late Prehistoric sites in Northwest Iowa (Blood Run [Oneota culture], Brewster [Mill Creek culture], and Chan-Ya-Ta [Mill Creek culture]) has been conducted to: 1) attempt seed identification to a species level, 2) evaluate the traits of the seeds for classification as either wild or domesticated, and 3) evaluate the role of Chenopodium utilization in both the Oneota and Mill Creek cultures.


Author(s):  
A. E. Hotchkiss ◽  
A. T. Hotchkiss ◽  
R. P. Apkarian

Multicellular green algae may be an ancestral form of the vascular plants. These algae exhibit cell wall structure, chlorophyll pigmentation, and physiological processes similar to those of higher plants. The presence of a vascular system which provides water, minerals, and nutrients to remote tissues in higher plants was believed unnecessary for the algae. Among the green algae, the Chaetophorales are complex highly branched forms that might require some means of nutrient transport. The Chaetophorales do possess apical meristematic groups of cells that have growth orientations suggestive of stem and root positions. Branches of Chaetophora incressata were examined by the scanning electron microscope (SEM) for ultrastructural evidence of pro-vascular transport.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2965
Author(s):  
Sandeep Agrawal ◽  
Nishant K. Singh ◽  
Rajeev Kumar Upadhyay ◽  
Gurminder Singh ◽  
Yashvir Singh ◽  
...  

In recent years, the engineering implications of carbon nanotubes (CNTs) have progressed enormously due to their versatile characteristics. In particular, the role of CNTs in improving the tribological performances of various engineering materials is well documented in the literature. In this work, an investigation has been conducted to study the tribological behaviour of CNTs filled with glass-reinforced polymer (GFRP) composites in dry sliding, oil-lubricated, and gaseous (argon) environments in comparison to unfilled GFRP composites. The tribological study has been conducted on hardened steel surfaces at different loading conditions. Further, the worn surfaces have been examined for a particular rate of wear. Field-emission scanning electron (FESEM) microscopy was used to observe wear behaviours. The results of this study explicitly demonstrate that adding CNTs to GFRP composites increases wear resistance while lowering friction coefficient in all sliding environments. This has also been due to the beneficial strengthening and self-lubrication properties caused by CNTs on GFRP composites, according to FESEM research.


Mycorrhiza ◽  
2021 ◽  
Author(s):  
Grace A. Hoysted ◽  
Jill Kowal ◽  
Silvia Pressel ◽  
Jeffrey G. Duckett ◽  
Martin I. Bidartondo ◽  
...  

AbstractNon-vascular plants associating with arbuscular mycorrhizal (AMF) and Mucoromycotina ‘fine root endophyte’ (MFRE) fungi derive greater benefits from their fungal associates under higher atmospheric [CO2] (a[CO2]) than ambient; however, nothing is known about how changes in a[CO2] affect MFRE function in vascular plants. We measured movement of phosphorus (P), nitrogen (N) and carbon (C) between the lycophyte Lycopodiella inundata and Mucoromycotina fine root endophyte fungi using 33P-orthophosphate, 15 N-ammonium chloride and 14CO2 isotope tracers under ambient and elevated a[CO2] concentrations of 440 and 800 ppm, respectively. Transfers of 33P and 15 N from MFRE to plants were unaffected by changes in a[CO2]. There was a slight increase in C transfer from plants to MFRE under elevated a[CO2]. Our results demonstrate that the exchange of C-for-nutrients between a vascular plant and Mucoromycotina FRE is largely unaffected by changes in a[CO2]. Unravelling the role of MFRE in host plant nutrition and potential C-for-N trade changes between symbionts under different abiotic conditions is imperative to further our understanding of the past, present and future roles of plant-fungal symbioses in ecosystems.


1981 ◽  
Vol 59 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Robert A. Blanchette ◽  
John B. Sutherland ◽  
Don L. Crawford

The greenish-brown margin of discolored wood in three living silver maple trees, Acer saccharinum L., was examined by scanning electron microscopy and microbiological culture techniques. Micrographs of xylem vessels revealed filamentous structures; some of them appeared to be actinomycetous hyphae. Actinomycetes identified as Streptomyces parvullus Waksman & Gregory, S. sparsogenes Owen, Dietz & Camiener, and a third Streptomyces strain were isolated repeatedly from discolored wood of each tree. These isolates grew in liquid media in the presence of 0.1% (w/v) concentrations of several phenols. Although other phenols included in the test were not substantially degraded, p-hydroxybenzoic acid was utilized as a carbon source by S. parvullus. All three actinomycetes inhibited growth of selected wood-inhabiting fungi when paired on malt agar. When inoculated on sterilized sapwood and discolored wood from silver maple, the actinomycetes colonized vessel walls and occlusions, but were not observed to decay cell walls.


2012 ◽  
Vol 19 (06) ◽  
pp. 1250062 ◽  
Author(s):  
X. H. ZHANG ◽  
Y. L. YUE ◽  
H. T. WU

Boroaluminosilicate glasses containing La2O3 were prepared by the normal quenching method. The glass transition temperatures (Tg) were measured by differential scanning calorimetry (DSC). The structural role of RO was investigated by nuclear magnetic resonance (NMR). Chemical durability was evaluated by weight losses of glass samples after immersion in HC1 solution. High resolution scanning electron microscopy (HR-SEM) was used to examine the surface micrographs of corroded glass samples. The dielectric constant and tangent loss were measured in the frequency range 10–106 Hz. The results revealed that chemical durability and dielectric properties increased with increasing La2O3 content.


2014 ◽  
Vol 15 (5) ◽  
pp. 1727-1736 ◽  
Author(s):  
Sarah N. Kiemle ◽  
Xiao Zhang ◽  
Alan R. Esker ◽  
Guillermo Toriz ◽  
Paul Gatenholm ◽  
...  
Keyword(s):  

1981 ◽  
Vol 59 (2) ◽  
pp. 251-263 ◽  
Author(s):  
X. Mourichon ◽  
G. Sallé

An electron microscopic study was performed on haustoria of Phytophthora cactorum (L. et C.) Schroeter developed in tissues of two cultivars of apple fruits: a susceptible variety ('Golden delicious') and a resistant one ('Belle de Boskoop'). Ultrastructure of intercellular hyphae and some aspects of their penetration between contiguous host cells were described. A light dissolution of the host cell walls was observed. Ontogenic investigations indicated that in the susceptible host, the wall of the fungal haustoria was covered with a dense-stained extrahaustorial matrix. Its origin and its polysaccharide nature were demonstrated. On the other hand, the resistant host developed, immediately after the inoculation, a papilla which gave rise, later on, to a sheath enclosing adult haustoria. The role of these callosic structures in the phenomenon of resistance was discussed.


Sign in / Sign up

Export Citation Format

Share Document