Growth kinetics of Marquis wheat. VI. Genetic dependence and winter hardening

1974 ◽  
Vol 52 (1) ◽  
pp. 151-157 ◽  
Author(s):  
F. D. H. Macdowall

An examination was made of the ability of the previously defined growth parameters to distinguish between Marquis and several other cultivars of wheat under controlled non-hardening (25 °C) and hardening (2–4 °C) temperature conditions. The spring wheats Marquis and Pitic were compared with the winter wheats Cappelle, Talbot, Rideau, and Kharkov. The maximum growth coefficient, kmL, for cv. Pitic significantly exceeded all others, those for Cappelle and Rideau were intermediate, and that for Talbot was lowest, but the range for winter wheats was not different from that for spring wheats at either temperature. Considerably reduced growth occurred under the lower temperature but neither the inverse relationship that is generally recognized to exist between plant growth and hardiness nor the recent evidence for growth in hardening tissues themselves were supported by any quantitative match between the growth parameters and freeze tolerance. It was concluded that the intrinsic growth coefficient, rather than the gross growth coefficient with its storage component, must be determined for correlation with hardening.

2014 ◽  
Vol 513-517 ◽  
pp. 56-59
Author(s):  
Li Xin Li ◽  
Jun Liang Zhao ◽  
Xue Mao Guan

The crystal growth kinetics in the deeply undercooled Zr50Cu50 melt was studied with the electromagnetic levitation technique. The maximum growth rate umax was, for the first time, demonstrated in undercooled metal and alloy melts, and this allowed us to construct the complete profile of crystal growth kinetics in the whole undercooling region of Zr50Cu50 melt. In deep undercooling region near glass transition, the diffusion-controlled crystal growth mechanism accounted for the growth kinetics, while at lower undercooling the profile around umax remarkably differed from what the classical growth theory covers.


1973 ◽  
Vol 51 (4) ◽  
pp. 729-736 ◽  
Author(s):  
F. D. H. Macdowall

Earlier described data from this laboratory were subjected to primary growth analysis. The plants had been grown in constant conditions of light intensity (200 to 2500 ft-c) and temperature (10° to 30 °C) at five different settings each. Multiple temperature optima were revealed and interpreted. The computed maximum plant growth coefficient was highest in value at 25 °C (plant kmL = 0.44 day−1) and secondarily so at 15 °C, but at the experimental light intensities the plant growth coefficient was maximal at 15 °C. The higher temperature optimum was characteristic of roots and "stems" (stem plus leaf sheaths) whose growth coefficients displayed a prominent peak at 25 °C (root kmL ~ 0.8 day−1, "stem" kmL = 0.4 day−1). This optimum was shifted downward with decreasing light intensity until temperature insensitivity was attained at low light intensity. The low-temperature optimum at 15 °C was principally displayed by leaf blades (lamina kmL = 0.47 day−1) whose computed maximum growth coefficient also showed a secondary maximum at 25°, but the 15 °C peak was the only one evident at low light intensities. It was tentatively concluded that the 25 °C temperature optimum was that of net translocation, and that the 15 °C temperature optimum was that of net photosynthesis in which photosynthesis was primarily balanced by photorespiration in wheat. The differential growth of the organs represented their relative sink strengths for attracting growth substrate, as dependent on light intensity and temperature. The availability of photosynthate was considered to be the dominating factor in the kinetics of growth free from inorganic limitations. When there was very little photosynthate the tissues benefited from translocation on a "first come first serve" basis. The high values of kmL pushed the absolute maximum plant growth coefficient, kM, of Marquis wheat toward 0.5 or 50% per day, and the basis of the advantage over previous approximations must be elucidated by further experiments. The computed relative efficiency of the use of photosynthate for growth was temperature dependent, but its value at optimum temperature was similar to previous estimates.


1996 ◽  
Vol 59 (6) ◽  
pp. 608-614 ◽  
Author(s):  
JOSEPH D. EIFERT ◽  
CHRIS GENNINGS ◽  
W. HANS CARTER ◽  
SUSAN E. DUNCAN ◽  
CAMERON R. HACKNEY

The growth of pathogenic bacteria in foods is affected by several factors which may interact to enhance or inhibit microbial growth. A model to predict the growth of Staphylococcus aureus 196E in microbiological media was developed using a modified Gompertz function and response-surface methodology. The predictive equation required the estimation of 23 parameters which describe singular and interactive effects of the growth factors studied. S. aureus 196E was inoculated into brain heart infusion broth formulated with either 0.5, 4.5, or 8.5% NaCl, adjusted to pH 5.0, 6.0, or 7.0, and incubated aerobically at 12, 20, or 28°C. Several interactive relationships between time, temperature, pH, and NaCl concentration were significant. The model adequately predicted the growth of S. aureus 196E. Predicted responses to multiple-factor interactions were displayed with three-dimensional and contour plots. A second model developed from a smaller subset of the growth data demonstrated that models could be produced with much less data collection. This methodology can provide important information to food scientists about the growth kinetics of microorganisms and prediction ranges or confidence intervals for growth parameters. Consequently, the effects of food formulations and storage conditions on the growth kinetics of foodborne pathogens or spoilage microorganisms could be predicted.


2003 ◽  
Vol 66 (2) ◽  
pp. 200-207 ◽  
Author(s):  
T. P. OSCAR

The green fluorescent protein (GFP) from the jellyfish Aequorea victoria can be expressed in, and used to follow the fate of, Salmonella in microbiologically complex ecosystems such as food. As a first step in the evaluation of GFP as a tool for the development of predictive models for naturally contaminated food, the present study was undertaken to compare the growth kinetics of parent and GFP-producing strains of Salmonella. A previously established sterile chicken burger model system was used to compare the growth kinetics of stationary-phase cells of parent and GFP strains of Salmonella Enteritidis, Salmonella Typhimurium, and Salmonella Dublin. Growth curves for constant temperatures from 10 to 48°C were fit to a two- or three-phase linear model to determine lag time, specific growth rate, and maximum population density. Secondary models for the growth parameters as a function of temperature were generated and compared between the parent and GFP strain pairs. The effects of GFP on the three growth parameters were significant and were affected by serotype and incubation temperature. The expression of GFP reduced specific growth rate and maximum population density while having only a small effect on the lag times of the three serotypes. The results of this study indicate that the growth kinetics of the GFP strains tested were different from those of the parent strains and thus would not be good marker strains for the development of predictive models for naturally contaminated food.


2001 ◽  
Vol 67 (6) ◽  
pp. 2499-2506 ◽  
Author(s):  
Bruce E. Logan ◽  
Husen Zhang ◽  
Peter Mulvaney ◽  
Michael G. Milner ◽  
Ian M. Head ◽  
...  

ABSTRACT Ten chlorate-respiring bacteria were isolated from wastewater and a perchlorate-degrading bioreactor. Eight of the isolates were able to degrade perchlorate, and all isolates used oxygen and chlorate as terminal electron acceptors. The growth kinetics of two perchlorate-degrading isolates, designated “Dechlorosoma” sp. strains KJ and PDX, were examined with acetate as the electron donor in batch tests. The maximum observed aerobic growth rates of KJ and PDX (0.27 and 0.28 h−1, respectively) were only slightly higher than the anoxic growth rates obtained by these isolates during growth with chlorate (0.26 and 0.21 h−1, respectively). The maximum observed growth rates of the two non-perchlorate-utilizing isolates (PDA and PDB) were much higher under aerobic conditions (0.64 and 0.41 h−1, respectively) than under anoxic (chlorate-reducing) conditions (0.18 and 0.21 h−1, respectively). The maximum growth rates of PDX on perchlorate and chlorate were identical (0.21 h−1) and exceeded that of strain KJ on perchlorate (0.14 h−1). Growth of one isolate (PDX) was more rapid on acetate than on lactate. There were substantial differences in the half-saturation constants measured for anoxic growth of isolates on acetate with excess perchlorate (470 mg/liter for KJ and 45 mg/liter for PDX). Biomass yields (grams of cells per gram of acetate) for strain KJ were not statistically different in the presence of the electron acceptors oxygen (0.46 ± 0.07 [n = 7]), chlorate (0.44 ± 0.05 [n = 7]), and perchlorate (0.50 ± 0.08 [n = 7]). These studies provide evidence that facultative microorganisms with the capability for perchlorate and chlorate respiration exist, that not all chlorate-respiring microorganisms are capable of anoxic growth on perchlorate, and that isolates have dissimilar growth kinetics using different electron donors and acceptors.


Author(s):  
Shiro Fujishiro ◽  
Harold L. Gegel

Ordered-alpha titanium alloys having a DO19 type structure have good potential for high temperature (600°C) applications, due to the thermal stability of the ordered phase and the inherent resistance to recrystallization of these alloys. Five different Ti-Al-Ga alloys consisting of equal atomic percents of aluminum and gallium solute additions up to the stoichiometric composition, Ti3(Al, Ga), were used to study the growth kinetics of the ordered phase and the nature of its interface.The alloys were homogenized in the beta region in a vacuum of about 5×10-7 torr, furnace cooled; reheated in air to 50°C below the alpha transus for hot working. The alloys were subsequently acid cleaned, annealed in vacuo, and cold rolled to about. 050 inch prior to additional homogenization


1998 ◽  
Vol 536 ◽  
Author(s):  
E. M. Wong ◽  
J. E. Bonevich ◽  
P. C. Searson

AbstractColloidal chemistry techniques were used to synthesize ZnO particles in the nanometer size regime. The particle aging kinetics were determined by monitoring the optical band edge absorption and using the effective mass model to approximate the particle size as a function of time. We show that the growth kinetics of the ZnO particles follow the Lifshitz, Slyozov, Wagner theory for Ostwald ripening. In this model, the higher curvature and hence chemical potential of smaller particles provides a driving force for dissolution. The larger particles continue to grow by diffusion limited transport of species dissolved in solution. Thin films were fabricated by constant current electrophoretic deposition (EPD) of the ZnO quantum particles from these colloidal suspensions. All the films exhibited a blue shift relative to the characteristic green emission associated with bulk ZnO. The optical characteristics of the particles in the colloidal suspensions were found to translate to the films.


2020 ◽  
Vol 13 (2) ◽  
pp. 83-92 ◽  
Author(s):  
A. Adam

SummaryEnhancement of the resistance level in plants by rhizobacteria has been proven in several pathosystems. This study investigated the ability of four rhizobacteria strains (Pseudomonas putida BTP1 and Bacillus subtilis Bs2500, Bs2504 and Bs2508) to promote the growth in three barley genotypes and protect them against Cochliobolus sativus. Our results demonstrated that all tested rhizobacteria strains had a protective effect on barley genotypes Arabi Abiad, Banteng and WI2291. However, P. putida BTP1 and B. subtilis Bs2508 strains were the most effective as they reduced disease incidence by 53 and 38% (mean effect), respectively. On the other hand, there were significant differences among the rhizobacteria-treated genotypes on plant growth parameters, such as wet weight, dry weight, plant height and number of leaves. Pseudomonas putida BTP1 strain was the most effective as it significantly increased plant growth by 15-32%. In addition, the susceptible genotypes Arabi Abiad and WI2291 were the most responsive to rhizobacteria. This means that these genotypes have a high potential for increase of their resistance against the pathogen and enhancement of plant growth after the application of rhizobacteria. Consequently, barley seed treatment with the tested rhizobacteria could be considered as an effective biocontrol method against C. sativus.


Sign in / Sign up

Export Citation Format

Share Document