LINP1 promotes the progression of cervical cancer by scaffolding EZH2, LSD1, and DNMT1 to inhibit the expression of KLF2 and PRSS8

2020 ◽  
Vol 98 (5) ◽  
pp. 591-599
Author(s):  
Liuli Wu ◽  
Yuan Gong ◽  
Ting Yan ◽  
Huimin Zhang

There is a growing body of evidence indicating that long non-coding RNAs (lncRNAs) are associated with a variety of cancers. LncRNA LINP1 has been shown to be a key factor in tumor malignancy. However, the role of LINP1 in cervical cancer (CC) it is unclear. In our research, we found that the levels of LINP1 were significantly elevated in CC tissues by comparison with adjacent normal tissue. Further, the expression level of LINP1 was upregulated in CC cells compared with healthy human cervical epithelial cell lines (HUCEC). Surprisingly, we found that downregulation of LINP1 significantly reduced the proliferation of CC cells and promoted apoptosis. Additionally, downregulation of LINP1 significantly decreased CC tumor growth in vivo. Further, we observed that LINP1 recruits EZH2, LSD1, and DNMT1, thereby reducing the expression of KLF2 and PRSS8. The results from our qRT–PCR analyses showed that silencing LINP1 uprgulated the expression of KLF2 and PRSS8 in CC cells. The results from our loss-of-function assays showed that upregulation of KLF2 and PRSS8 inhibits cell proliferation and boosts cell apoptosis in CC. We also found that inhibition of KLF2 and PRSS8 reversed the inhibitory effect on cell proliferation associated with silencing LINP1. In short, LINP1 facilitates the progression of CC by suppressing KLF2 and PRSS8, and thus could provide a promising target for CC therapy.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Huilin Zhang ◽  
Ping He ◽  
Qing Zhou ◽  
Yan Lu ◽  
Bingjian Lu

Abstract Background CSN5, a member of Cop9 signalosome, is essential for protein neddylation. It has been supposed to serve as an oncogene in some cancers. However, the role of CSN5 has not been investigated in cervical cancer yet. Methods Data from TCGA cohorts and GEO dataset was analyzed to examine the expression profile of CSN5 and clinical relevance in cervical cancers. The role of CSN5 on cervical cancer cell proliferation was investigated in cervical cancer cell lines, Siha and Hela, through CSN5 knockdown via CRISPR–CAS9. Western blot was used to detect the effect of CSN5 knockdown and overexpression. The biological behaviors were analyzed by CCK8, clone formation assay, 3-D spheroid generation assay and cell cycle assay. Besides, the role CSN5 knockdown in vivo was evaluated by xenograft tumor model. MLN4924 was given in Siha and Hela with CSN5 overexpression. Results We found that downregulation of CSN5 in Siha and Hela cells inhibited cell proliferation in vitro and in vivo, and the inhibitory effects were largely rescued by CSN5 overexpression. Moreover, deletion of CSN5 caused cell cycle arrest rather than inducing apoptosis. Importantly, CSN5 overexpression confers resistance to the anti-cancer effects of MLN4924 (pevonedistat) in cervical cancer cells. Conclusions Our findings demonstrated that CSN5 functions as an oncogene in cervical cancers and may serve as a potential indicator for predicting the effects of MLN4924 treatment in the future.


Open Medicine ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 1749-1761
Author(s):  
Xin Cao ◽  
Xianfeng Meng ◽  
Peng Fu ◽  
Lin Wu ◽  
Zhen Yang ◽  
...  

Abstract Osteosarcoma (OS) is a highly metastatic primary malignant tumor. CircRNA hsa_circ_0028173 (circATP2A2) has been uncovered to be related to the advancement of OS. However, the biological role of circATP2A2 in OS has not been validated. circATP2A2 and MYH9 were upregulated while miR-335-5p was downregulated in OS. OS patients with high circATP2A2 expression displayed a shorter overall survival and the area under curve of circATP2A2 was 0.77, manifesting that circATP2A2 might be a diagnostic and prognostic biomarker. circATP2A2 silencing repressed OS cell proliferation and glycolysis in vivo and constrained OS cell proliferation, glycolysis, migration, and invasion in vitro. circATP2A2 regulated MYH9 expression through sponging miR-335-5p. MiR-335-5p inhibitor reversed the repressive effect of circATP2A2 knockdown on OS cell malignancy and glycolysis. MYH9 overexpression overturned miR-335-5p upregulation-mediated OS cell malignancy and glycolysis. circATP2A2 accelerated OS cell malignancy and glycolysis through upregulating MYH9 via sponging miR-335-5p, offering a promising target for OS treatment.


Reproduction ◽  
2014 ◽  
Vol 147 (1) ◽  
pp. 91-99 ◽  
Author(s):  
Hong-Fei Xia ◽  
Jing-Li Cao ◽  
Xiao-Hua Jin ◽  
Xu Ma

MiR199a was found to be differentially expressed in rat uteri between the prereceptive and receptive phase via microRNA (miRNA) microarray analysis in our previous study. However, the role of miR199a in rat embryo implantation remained unknown. In the study, northern blot results showed that the expression levels of miR199a were higher on gestation days 5 and 6 (g.d.5–6) in rat uteri than on g.d.3–4 and g.d.7–8. In situ localization of miR199a in rat uteri showed that miR199a was mainly localized in the stroma or decidua. The expression of miR199a was not significantly different in the uteri of pseudopregnant rats and evidently increased in the uteri of rats subjected to activation of delayed implantation and experimentally induced decidualization. Treatment with 17β-estradiol or both 17β-estradiol and progesterone significantly diminished miR199a levels. Gain of function of miR199a in endometrial stromal cells isolated from rat uteri inhibited cell proliferation and promoted cell apoptosis. Loss of function of miR199a displayed opposite roles on cell proliferation and apoptosis. Further investigation uncovered a significant inverse association between the expression of miR199a and growth factor receptor-bound protein 10 (Grb10), an imprinted gene, and miR199a could bind to the 3′UTR of Grb10 to inhibit Grb10 translation. In addition, in vivo analysis found that the immunostaining of GRB10 was attenuated in the stroma or decidua from g.d.4 to 6, contrary to the enhancement of miR199a. Collectively, upregulation of miR199a in rat uterus during the receptive phase is regulated by blastocyst activation and uterine decidualization. Enforced miR199a expression suppresses cell proliferation partially through targeting Grb10.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 833-833
Author(s):  
Sophia Adamia ◽  
Mariateresa Fulciniti ◽  
Herve Avet-Loiseau ◽  
Samir B Amin ◽  
Parantu Shah ◽  
...  

Abstract Abstract 833 A growing body of evidence suggests that the genome of a many organisms, particularly mammals is controlled not only by transcription factors but also by post-transcriptional programs that are modulated by the family of small RNA molecules including microRNAs (miRs). miRs can block mRNA translation and affect mRNA stability. We have evaluated profiles of 384 human miRs in CD138+ cells from 79 patients with multiple myeloma (MM), 11 MM cell lines and 9 healthy donors (HD) using qRT-PCR based microRNA array. This analysis has identified a MM specific miRNA signature that significantly correlates with OS (p=0.05) and EFS (p=0.017) of patients. Based on this signature one group of patients clustered with HD suggesting indolent disease while other with cell lines indicating aggressive disease. We identified significant modulation of expression of 61 microRNAs in MM cells compared to normal plasma cells. Specific miRs with established oncogenic and tumor suppressor functions such as miR-155, miR-585 and Let7-f were significantly dysregulated in MM (p<0.001). Modulation of miRs-155, -585 and Let7 were observed most frequently in the group of patients with poor OS and EFS suggesting their crucial role in MM. However biological role of these miRs have not yet been defined. To further evaluate biological function of these most recurrent miRs in MM, we evaluated role of miR-155, let-7f and mir-585 in MM cell lines by gain- and loss- of function experiments. We used locked nucleic acid (LNA) anti-miR probes for loss of function and pre-miR-155 for gain of function studies using them alone or in combination. Although manipulation of all 3 miRs induced 20-25% change in MM cell proliferation and/or induction of apoptosis, combination of anti-miR-let7f with pre-miR-155, and anti-miR-585 in combination with miR-155 had dramatic effects on MM cell proliferation and over 60% cells undergoing apoptosis. To evaluate the targets of these miRs, we have determined effects of these anti-miRs and pre-miR on global gene and miR expression profile in MM alone and in combinations. This analysis identified modulation of cluster of miRs as well as genes critical for cell growth and survival. Next, we have tested efficacy of these miRs in vivo in murine Xenograft model to evaluate their therapeutic potential. Tumor-bearing mice were treated intraperitoneal for four consecutively days with the LNA anti-miR-585 and Let-7 and pre-miR-155 probes and respective controls alone and in combination. We observed that the single LNA anti-miR-585 and let 7 and pre miR-155 treatment reduced tumor size by 36%, 31% and 155% in animal 7 days after treatment. However, significant tumor size reductions were achieved when animals were treated with combinations; anti-miR-Let 7f plus pre-miR-155 (58 %); LNA anti-miR-Let 7f plus LNA anti-miR-585 (56 %); LNA-anti-miR-585 plus pre-miR-155 (74 %).We did not observe any significant systemic toxicity in the animals. In conclusion our results suggest significant biological role for miR-585, let 7f and miR-155 in myeloma, both in vitro and in vivo; it highlights for the first time a concerted activity of combination of miRs and holds a great promise for developing novel therapeutic approach for myeloma. Disclosures: No relevant conflicts of interest to declare.


Biology ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 98
Author(s):  
Raquel Atienzar-Aroca ◽  
José-Daniel Aroca-Aguilar ◽  
Susana Alexandre-Moreno ◽  
Jesús-José Ferre-Fernández ◽  
Juan-Manuel Bonet-Fernández ◽  
...  

Myocilin is a secreted glycoprotein with a poorly understood biological function and it is mainly known as the first glaucoma gene. To explore the normal role of this protein in vivo we developed a myoc knockout (KO) zebrafish line using CRISPR/Cas9 genome editing. This line carries a homozygous variant (c.236_239delinsAAAGGGGAAGGGGA) that is predicted to result in a loss-of-function of the protein because of a premature termination codon p.(V75EfsX60) that resulted in a significant reduction of myoc mRNA levels. Immunohistochemistry showed the presence of myocilin in wild-type embryonic (96 h post-fertilization) anterior segment eye structures and caudal muscles. The protein was also detected in different adult ocular and non-ocular tissues. No gross macroscopic or microscopic alterations were identified in the KO zebrafish, but, remarkably, we observed absence of females among the adult KO animals and apoptosis in the immature juvenile gonad (28 dpf) of these animals, which is characteristic of male development. Transcriptomic analysis showed that adult KO males overexpressed key genes involved in male sex determination and presented differentially expressed Wnt signalling genes. These results show that myocilin is required for ovary differentiation in zebrafish and provides in vivo support for the role of myocilin as a Wnt signalling pathway modulator. In summary, this myoc KO zebrafish line can be useful to investigate the elusive function of this protein, and it provides evidence for the unexpected function of myocilin as a key factor in zebrafish sex determination.


2021 ◽  
Vol 8 ◽  
Author(s):  
Changjun Zheng ◽  
Ronghang Li ◽  
Shuang Zheng ◽  
Hongjuan Fang ◽  
Meng Xu ◽  
...  

Osteosarcoma (OS), a frequent malignant tumor which mainly occurs in the bone. The roles of long noncoding RNAs (lncRNAs) have been revealed in cancers, including OS. LncRNA long intergenic non-protein coding RNA (LINC00174) has been validated as an oncogene in several cancers. However, the role of LINC00174 in OS has not been explored. In our research, loss-of-function assays were conducted to explore the function of LINC00174 in OS cells. Then, we explored the downstream pathway of LINC00174 in OS cells. Bioinformatics, RNA pull-down and RIP experiments investigated the downstream mechanism of LINC00174 in OS cells. Finally, in vivo assays clarified the effect of LINC00174 on tumorigenesis. We found that LINC00174 was upregulated in OS tissues and cells. LINC00174 knockdown repressed OS cell growth. Mechanistically, LINC00174 knockdown suppressed the TGF-β/SMAD pathway. LINC00174 interacted with miR-378a-3p, and slingshot protein phosphatase 2 (SSH2) 3′UTR was targeted by miR-378a-3p in OS cells. Rescue assays showed that SSH2 upregulation or miR-378a-3p inhibition counteracted the inhibitory effect of LINC00174 depletion in OS cell growth. Additionally, LINC00174 depletion suppressed tumor growth in mice. In conclusion, LINC00174 promotes OS cellular malignancy and tumorigenesis via the miR-378a-3p/SSH2 axis and the TGF-β/SMAD pathway, which might provide a novel insight for OS treatment.


Blood ◽  
2021 ◽  
Author(s):  
Stefania Mazzi ◽  
Philippe Dessen ◽  
Mathieu Vieira ◽  
Virginie Dufour ◽  
Marie Cambot ◽  
...  

EZH2, the enzymatic component of PRC2, has been identified as a key factor in hematopoiesis. EZH2 loss of function mutations have been found in myeloproliferative neoplasms, more particularly in myelofibrosis, but the precise function of EZH2 in megakaryopoiesis is not fully delineated. Here, we show that EZH2 inhibition by small molecules and shRNA induces MK commitment by accelerating lineage marker acquisition without change in proliferation. Later in differentiation, EZH2 inhibition blocks proliferation, polyploidization and decreases proplatelet formation. EZH2 inhibitors similarly reduce MK polyploidization and proplatelet formation in vitro and platelet level in vivo in a JAK2V617F background. In transcriptome profiling, the defect in proplatelet formation was associated with an aberrant actin cytoskeleton regulation pathway, whereas polyploidization was associated with an inhibition of expression of genes involved in DNA replication and repair, and an upregulation of CDK inhibitors, more particularly CDKN1A and CDKN2D. The knockdown of CDKN1A and at a lesser extend of CDKN2D could partially rescue the percentage of polyploid MKs. Moreover, H3K27me3 and EZH2 ChIP assays revealed that only CDKN1A is a direct EZH2 target while CDKN2D expression is not directly regulated by EZH2 suggesting that EZH2 controls MK polyploidization directly through CDKN1A and indirectly through CDKN2D.


2021 ◽  
Vol 12 (11) ◽  
Author(s):  
Jin-Yu Liu ◽  
Ya-Jing Chen ◽  
Huan-Hui Feng ◽  
Zhan-Li Chen ◽  
Yun-Long Wang ◽  
...  

AbstractOncogenic c-Myc is a master regulator of G1/S transition. Long non-coding RNAs (lncRNAs) emerge as new regulators of various cell activities. Here, we found that lncRNA SnoRNA Host Gene 17 (SNHG17) was elevated at the early G1-phase of cell cycle. Both gain- and loss-of function studies disclosed that SNHG17 increased c-Myc protein level, accelerated G1/S transition and cell proliferation, and consequently promoted tumor cell growth in vitro and in vivo. Mechanistically, the 1-150-nt of SNHG17 physically interacted with the 1035-1369-aa of leucine rich pentatricopeptide repeat containing (LRPPRC) protein, and disrupting this interaction abrogated the promoting role of SNHG17 in c-Myc expression, G1/S transition, and cell proliferation. The effect of SNHG17 in stimulating cell proliferation was attenuated by silencing c-Myc or LRPPRC. Furthermore, silencing SNHG17 or LRPPRC increased the level of ubiquitylated c-Myc and reduced the stability of c-Myc protein. Analysis of human hepatocellular carcinoma (HCC) tissues revealed that SNHG17, LRPPRC, and c-Myc were significantly upregulated in HCC, and they showed a positive correlation with each other. High level of SNHG17 or LRPPRC was associated with worse survival of HCC patients. These data suggest that SNHG17 may inhibit c-Myc ubiquitination and thus enhance c-Myc level and facilitate proliferation by interacting with LRPPRC. Our findings identify a novel SNHG17-LRPPRC-c-Myc regulatory axis and elucidate its roles in G1/S transition and tumor growth, which may provide potential targets for cancer therapy.


2020 ◽  
Author(s):  
Zhe Pan ◽  
Xiao Liu ◽  
Quan Chang ◽  
Jin-jin Zhang ◽  
Na Hua ◽  
...  

Abstract Background: Epiplakin1 (Eppk1) is part of the EGF signal and is involved in cytoskeleton reorganization and cell proliferation. However, the role of Eppk1 in cervical cancer remains unknown. Methods: The expression of Eppk1 and KLF5 as well as their correlation were assessed by RNA-seq, qRT-PCR, TCGA database and immunofluorescence staining. In CC cell lines, adenovirus-mediated overexpression or knockdown of KLF5 and Eppk1 as well as corresponding assessment of cell proliferation and signaling were determined by western blot and CCK8 experiments. Assays of lucifase reporter gene and CHIP were used to investigate mechanism between KLF5 and Eppk1. Results: Eppk1 expression was markedly in CC tissues and cell lines companied by KLF5 upregulation. The results of immunofluorescence staining further showed that the increased expression of Eppk1 and KLF5 correlated with progression of cervical tumorigenesis. Overexpression of KLF5 significantly increased Eppk1 expression at transcription and translation levels. Conversely, the knockdown of KLF5 by siRNA against KLF5 decreased Eppk1 expression. Mechanical studies showed that KLF5 activated Eppk1 transcription by direct binding to the Eppk1 promoter. Gain- and loss-of-function experiments showed that KLF5 promoted cell proliferation in Hela by upregulating Eppk1 expression. Moreover, KLF5-mediated the activation of EGFR and p38 signaling significantly decreased after Eppk1 knockdown companied with reduction of proliferating activity, suggesting that Eppk1 lies upstream of p38 signaling affecting cell proliferation in CC. Finally, the expression of Eppk1 positively correlated with tumor size. Conclusions: Eppk1 may be an effective therapeutic target on affecting EGFR-associated p38 signaling pathway and cell proliferation in cervical cancer.


2020 ◽  
Author(s):  
Yan Zhang ◽  
Xing Li ◽  
Jun Zhang ◽  
Lin Mao

Abstract Background: Cervical cancer is one most common cancer types among females over the world. While its underlying mechanisms remain unclear. Circ-CCDC66 has been revealed to participate in multiple biological functions, and contribute to various diseases’ progression. In the current study, we aimed to demonstrate the role of circ-CCDC66 in cervical cancer progression. Methods: Real-time quantitative PCR (RT-qPCR) was conducted to measure the expression of circ-CCDC66, miR-452-5p, and REXO1 mRNA. Cell fractionation assay and RNA fluorescence in situ hybridization (FISH) were performed to locate circ-CCDC66 in cells. Cell account kit 8 (CCK-8) was used to detect cell proliferation ability. Transwell assay was applied to evaluate cell migration or invasion ability. Bioinformatics analysis, biotinylated RNA pull-down, RNA immunoprecipitation, and dual-luciferase reporter assays were conducted to assess the association between miR-452 and circ-CCDC66 or REXO1. Western blot was applied to measure the protein expression of REXO1. The animal tumor model was used to assess the effect of circ-CCDC66 in vivo . Results: The expression of circ-CCDC66 was upregulated in cervical cancer tumor tissues in comparison with normal tissues, and correlated with later tumor stage and larger tumor size. Downregulated circ-CCDC66 inhibited cervical cancer cell proliferation, migration, and invasion. Circ-CCDC66 was an efficient molecular sponge for miR-452-5p, and negatively regulated miR-452-5p expression. MiR-452-5p directly targeted to REXO1. Circ-CCDC66 regulated REXO1 expression to modulate cervical cancer progression via miR-452-5p. Moreover, downregulated circ-CCDC66 was found to suppress tumor growth in vivo. Conclusion: Our results demonstrated the role of circ-CCDC66/miR-452-5p/REXO1 axis in cervical cancer progression, we might provide novel therapeutic targets for cervical cancer clinical intervention.


Sign in / Sign up

Export Citation Format

Share Document