Criteria for defining the required duration of a creep test

2015 ◽  
Vol 52 (7) ◽  
pp. 883-889
Author(s):  
Z. Tomanovic ◽  
B. Miladinovic ◽  
S. Zivaljevic

Time-dependent behaviour of some types of rocks is of the “creep” type, in particular in underground works, mining works, and in measuring procedures of rock properties. Tests used for defining material parameters or parameters relevant to defining a failure or behaviour of a material in the plastic state are usually of significantly shorter duration than the creep test. The duration of creep tests may vary from several hours to several years depending on the material being tested and the phenomenon that is the subject of the research. The required duration of the creep test, which provides reliable definition of the time-dependent material parameters of the rheological model, is a theoretical but also practical issue. The theoretical issue relates to establishing criteria for defining the required duration of the creep test. The practical issue relates to minimizing the duration of the creep test from which the necessary material parameters of the rock mass are obtained for correct numerical calculations. This paper proposes criteria for defining the required duration of a rock creep test, based on analysis of the results of unconfined uniaxial compression tests performed on marly rock samples.

2018 ◽  
Vol 33 (4) ◽  
pp. 592-602
Author(s):  
Amanda Mattsson ◽  
Tetsu Uesaka

Abstract In end-use, containerboard is subjected to a variety of loading histories, such as seconds of loading/unloading, hours of vibration, days of creep load. The fundamental question is whether the commonly measured static strength represents “strength” under these conditions. Another question is, since those time-dependent failures are notoriously variable, how to describe the probabilistic aspect. This study concerns the characterisation of these different facets of “strength”. In our earlier work, we have investigated the theoretical framework for time-dependent, probabilistic failures, and identified three material parameters: (1) characteristic strength, {S_{c}}, representing short-term strength, (2) brittleness/durability parameter, ρ, and (3) reliability parameter, β. We have also developed a new method that allows us to determine all these parameters much faster than typical creep tests. Using the new method, we have started investigating effects of basic papermaking variables on the new material parameters. Among the samples tested, the parameter ρ varied from 20 to 50, and β from 0.5 to 1.0. This suggests that, even within the current papermaking practice, there is a wide operating window to tune these new material parameters. The future work is, therefore, to find specific manufacturing variables that can systematically change these new material parameters.


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2396
Author(s):  
Xingang Wang ◽  
Baoqin Lian ◽  
Wenkai Feng

Water has a crucial effect on the time-dependent behavior of rocks. The long-term cyclical fluctuations of reservoir water level lead to dry–wet (DW) cycles of rocks on reservoir bank slopes, making this influential factor more complex. To deeply understand the time-dependent behavior of rocks under DW cycles, argillite from the reservoir bank slope of Longtan Hydropower Station was used to perform a series of triaxial creep tests. Subsequently, based on analysis of creep test results after different DW cycles, a damage nonlinear Burgers viscoelastic-plastic (DNBVP) model considering the effect of saturation–dehydration cycles was proposed by introducing a nonlinear viscoplastic body and a damage variable describing DW cycles. Then, the three-dimensional creep equations of the new model were derived and its creep parameters were identified. Comparison between the theoretical curves and the test results shows that the theoretical curves of the DNBVP model were able to describe rock creep tests results after different DW cycles. Furthermore, by comparing classical creep models with the proposed model, it was found that the DNBVP model can accurately reflect the nonlinear characteristics of rocks at the accelerated creep stage. Finally, the sensitivity of the DNBVP model was analyzed and discussed, and three-dimensional central difference expressions necessary for secondary development of the new model were also derived in detail. The proposed new model with secondary development may provide a basis for improving the geotechnical design of reservoir bank slopes and the control of reservoir bank landslides.


2020 ◽  
Vol 57 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Yang-Ping Yao ◽  
Yu-Fei Fang

After unloading, the deformation of soils cannot be stable immediately, but continues to expand over time even under constant pressure. In this paper, the expansive deformation over time when effective stress is kept constant is defined as the negative creep, while the compressive creep is described as the positive creep. The division between positive creep and negative creep is named the stable normal compression line (SNCL), on which the stress–strain behaviour of the soil is time-independent. Based on the concept of the SNCL and test results, a new formula for creep is proposed. This formula is simple in form and has less parameters, and both negative creep and positive creep can be well predicted. By incorporating this formula into the current yield function of the unified hardening model, a new time-dependent current yield function is built. Combining the yield function, a flow rule, and transformed stress method, a new three-dimensional time-dependent constitutive model considering both positive and negative creep for clays is derived and presented. The new model is then validated by test results, including multistage loading oedometer tests, triaxial undrained creep tests, and triaxial undrained compression tests at the constant strain rates.


1988 ◽  
Vol 25 (2) ◽  
pp. 262-278 ◽  
Author(s):  
Emery Z. Lajtai ◽  
E. J. Scott Duncan

Specimens of potash rock from the Rocanville mine of the Potash Corporation of Saskatchewan were subjected to uniaxial compression tests and to time-dependent creep tests under static, uniaxial loading.During the first cycle of loading, the main sources of the measured strain are compaction and dilation at grain boundaries and consolidation of the clay phase. The crystals of halite and sylvite deform elastically at low stress and in a brittle manner at high stress. There is little, if any, evidence for constant-volume plastic deformation at any level of uniaxial stress.The stress–strain curve can be divided into three parts, each representing a different dominant deformational process: a low-stress quasi-elastic, an intermediate-stress ductile, and a high-stress brittle mechanism. The three parts are separated by the yield point (1–8 MPa) and the crack initiation point (10–13 MPa). The strength of the Rocanville potash specimens ranged between 15 and 18 MPa.The deformation of potash rock is strongly time dependent. There is evidence for the existence of all three stages of creep: transient, steady-state, and tertiary. There is very little interrelationship between the axial and lateral creep strains; the volumetric strain is negative at low stress and positive (dilatant) at high stress, but rarely, if ever, constant. Key words: creep, dilatant, ductile, elastic, fracture, microfracture, plastic, potash, salt.


2013 ◽  
Vol 1580 ◽  
Author(s):  
AZM Ariful Islam ◽  
Robert J. Klassen

ABSTRACTIn this study the length scale dependence of the operative mechanisms of time-dependent plastic deformation was studied using room temperature compression tests performed on Au micro-pillars and micro-spheres of 1.0 to 5.0 µm diameter. All the samples tested displayed deformation that had a component of random strain jumps. In the case of the Au micro-pillars, the frequency of the strain jumps showed a bilinear dependence upon pillar diameter with the frequency being larger, and more sensitive to diameter, when the pillar diameter was small (and τR was high). We suggest that this indicates a transition from deformation occurring by deformation on multiple slip planes to deformation occurring predominantly by single-plane dislocation slip when the pillar diameter is less than 2 µm.The strain jump frequency during the constant-load micro-pillar creep tests showed a linear dependence upon τR. Creep tests performed on the micro-spheres of 5.0 µm diameter displayed displacement jump frequency that was essentially independent of the applied load while the jump frequency increased with increasing load for the smaller 2.5 µm diameter micro-spheres. We suggest that this difference is related to the volume of the micro-sphere. When the volume is small, the component of the deformation that occurs by a stochastic dislocation glide process is increased and becomes strongly dependent upon the magnitude of the local shear stress.


2006 ◽  
Vol 129 (1) ◽  
pp. 82-89 ◽  
Author(s):  
Katsuhiko Sasaki ◽  
Takuji Kobayashi ◽  
Ken-ichi Ohguchi

Time-dependent deformations such as creep and ratchetting of solder alloys are significant deformation phenomena that need to be understood to ensure the safety and reliability of solder joints in electronic packaging. There is much research on creep deformation of solder alloys, but ratchetting deformation, especially the correlation between creep and ratchetting deformation of solder alloys has not been investigated. This paper discusses the correlation between creep and uniaxial ratchetting deformation to establish the differences in the time-dependent deformation of lead-free and lead-containing solder alloys. Uniaxial ratchetting tests were conducted by cyclic tension–compression tests or cyclic tension–unloading tests at several ratios of the maximum to minimum stresses. Additional creep tests following the uniaxial ratchetting were also conducted to observe the effect of the uniaxial ratchetting on creep deformation. An empirical method to select an optimal lead-free solder alloy is discussed by defining a uniaxial ratchetting strain rate. The additional creep tests also show that the uniaxial ratchetting deformation has a strong correlation to the creep deformation and that the correlation is different for lead-free and lead-containing solder alloys.


2004 ◽  
Vol 19 (5) ◽  
pp. 1531-1538 ◽  
Author(s):  
Guangyin Yuan ◽  
Kenji Amiya ◽  
Hidemi Kato ◽  
Akihisa Inoue

The structure and mechanical properties of Mg–Zn–Al–Y base cast alloys containing an icosahedral quasicrystal phase (i-phase) as a main strengthening phase were investigated. Mg–8Zn–4Al–xY base bulk alloys containing the i-phase were prepared by casting into a copper mold at moderate cooling rates. The Y addition was effective for decreasing the size of the i-phase and the increasing the homogeneity of its dispersed state. The mechanical properties examined by compression tests at room temperature were much superior to those of a conventional AZ91 Mg alloy. The creep tests at elevated temperatures indicated a promising high temperature creep resistance of the quasicrystal-reinforced Mg–Zn–Al–Y cast alloy. The strengthening mechanism was also discussed.


2011 ◽  
Vol 66 (1-2) ◽  
pp. 40-46 ◽  
Author(s):  
Corina Fetecau ◽  
Muhammad Imran ◽  
Constantin Fetecau

Taylor-Couette flow in an annulus due to a time-dependent torque suddenly applied to one of the cylinders is studied by means of finite Hankel transforms. The exact solutions, presented under series form in terms of usual Bessel functions, satisfy both the governing equations and all imposed initial and boundary conditions. They can easily be reduced to give similar solutions for Maxwell, second grade, and Newtonian fluids performing the same motion. Finally, some characteristics of the motion, as well as the influence of the material parameters on the behaviour of the fluid, are emphasized by graphical illustrations.


2018 ◽  
Vol 89 (8) ◽  
pp. 1472-1487
Author(s):  
Krzysztof Zerdzicki ◽  
Pawel Klosowski ◽  
Krzysztof Woznica

In this paper the coupled service (constructional tension) and environmental (sunlight, rainfalls, temperature variations) ageing influence on the polyester-reinforced polyvinyl chloride (PVC)-coated fabric VALMEX is studied. Two cases of the same fabric have been analyzed: one USED for 20 years on the real construction of the Forest Opera in Sopot (Poland), and one kept as a spare material (NOT USED). The following tests have been conducted: uniaxial tensile, biaxial tensile and long-term creep tests. The obtained results have been used for the parameter identification of the piecewise non-linear, Burgers and Bodner–Partom models. Next, the analysis of the influence of environmental conditions on the parameters of these models has been made. It has been concluded that some parameters are more and the others are less sensitive to the exposure to environmental and mechanical conditions. The change of material parameters for fill threads (due to larger deformation) is higher. The obtained results may be useful in the durability evaluation of the textile membranes reinforced with polyester threads and PVC coated. All the constitutive models with the identified parameters may be used for the numerical analysis of structures made of fabrics at the service beginning and after long-term usage.


2013 ◽  
Vol 639-640 ◽  
pp. 493-497
Author(s):  
Woo Tai Jung ◽  
Sung Yong Choi ◽  
Young Hwan Park

The hydraulic loading device commonly used for creep test necessitates continuous recharge of the hydraulic pressure with time and is accompanied by slight variation of the permanent load at each recharge. Therefore, accurate test results cannot be obtained for long-term creep tests requiring time-dependent behavioral analysis during more than 6 months. This study conducts creep test as part of the analysis of the long-term characteristics of fiber-reinforced lean concrete sub-base of pavement. The creep test is executed using the new load-amplifier device not a conventional loading device. Since the results of the preliminary verification test on the new creep test device show that constant permanent load is applied without significant variation, it can be expected that more accurate measurement of the creep will be possible in a long-term compared to the conventional hydraulic device. In addition, the creep test results of sub-base specimens reveal the occurrence of large instantaneous elastic strain, differently from the strain curve observed in ordinary concrete, as well as the occurrence of small creep strain leading to low creep coefficient.


Sign in / Sign up

Export Citation Format

Share Document