The mechanism of deformation and fracture in potash rock

1988 ◽  
Vol 25 (2) ◽  
pp. 262-278 ◽  
Author(s):  
Emery Z. Lajtai ◽  
E. J. Scott Duncan

Specimens of potash rock from the Rocanville mine of the Potash Corporation of Saskatchewan were subjected to uniaxial compression tests and to time-dependent creep tests under static, uniaxial loading.During the first cycle of loading, the main sources of the measured strain are compaction and dilation at grain boundaries and consolidation of the clay phase. The crystals of halite and sylvite deform elastically at low stress and in a brittle manner at high stress. There is little, if any, evidence for constant-volume plastic deformation at any level of uniaxial stress.The stress–strain curve can be divided into three parts, each representing a different dominant deformational process: a low-stress quasi-elastic, an intermediate-stress ductile, and a high-stress brittle mechanism. The three parts are separated by the yield point (1–8 MPa) and the crack initiation point (10–13 MPa). The strength of the Rocanville potash specimens ranged between 15 and 18 MPa.The deformation of potash rock is strongly time dependent. There is evidence for the existence of all three stages of creep: transient, steady-state, and tertiary. There is very little interrelationship between the axial and lateral creep strains; the volumetric strain is negative at low stress and positive (dilatant) at high stress, but rarely, if ever, constant. Key words: creep, dilatant, ductile, elastic, fracture, microfracture, plastic, potash, salt.

2002 ◽  
Vol 39 (1) ◽  
pp. 149-156 ◽  
Author(s):  
J A Howie ◽  
T Shozen ◽  
Y P Vaid

The paper presents the results of laboratory triaxial compression tests to study the stiffness of very loose Fraser River sands. The stiffness has been shown to be very dependent on the time of confinement prior to shearing and the stress ratio at which the sample is aged. Higher stress ratios resulted in very low initial moduli with no ageing, but the moduli increased by several hundred percent during the first 1000 min of ageing. For ageing at a stress ratio of 1.0 (i.e., isotropic ageing), the initial moduli were higher than those for ageing at high stress ratios, but the stiffness increased by only about 60% during the first 1000 min of ageing. The rate of stiffness increase was approximately linear with the logarithm of time up to ageing times of 10 000 min (>1 week). Ageing at any stress ratio resulted in reduced contractive volumetric strain during subsequent shearing, reflecting a change in soil structure during ageing. The dεv /dεa ratio under triaxial compression loading decreased as the ageing stress ratio increased. The results suggest that close attention must be paid to the age of laboratory samples prepared to study the stress–strain response of sands at strains up to about 0.1%, particularly in studies on loose sand.Key words: sands, ageing, creep, modulus.


2020 ◽  
Vol 57 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Yang-Ping Yao ◽  
Yu-Fei Fang

After unloading, the deformation of soils cannot be stable immediately, but continues to expand over time even under constant pressure. In this paper, the expansive deformation over time when effective stress is kept constant is defined as the negative creep, while the compressive creep is described as the positive creep. The division between positive creep and negative creep is named the stable normal compression line (SNCL), on which the stress–strain behaviour of the soil is time-independent. Based on the concept of the SNCL and test results, a new formula for creep is proposed. This formula is simple in form and has less parameters, and both negative creep and positive creep can be well predicted. By incorporating this formula into the current yield function of the unified hardening model, a new time-dependent current yield function is built. Combining the yield function, a flow rule, and transformed stress method, a new three-dimensional time-dependent constitutive model considering both positive and negative creep for clays is derived and presented. The new model is then validated by test results, including multistage loading oedometer tests, triaxial undrained creep tests, and triaxial undrained compression tests at the constant strain rates.


2013 ◽  
Vol 1580 ◽  
Author(s):  
AZM Ariful Islam ◽  
Robert J. Klassen

ABSTRACTIn this study the length scale dependence of the operative mechanisms of time-dependent plastic deformation was studied using room temperature compression tests performed on Au micro-pillars and micro-spheres of 1.0 to 5.0 µm diameter. All the samples tested displayed deformation that had a component of random strain jumps. In the case of the Au micro-pillars, the frequency of the strain jumps showed a bilinear dependence upon pillar diameter with the frequency being larger, and more sensitive to diameter, when the pillar diameter was small (and τR was high). We suggest that this indicates a transition from deformation occurring by deformation on multiple slip planes to deformation occurring predominantly by single-plane dislocation slip when the pillar diameter is less than 2 µm.The strain jump frequency during the constant-load micro-pillar creep tests showed a linear dependence upon τR. Creep tests performed on the micro-spheres of 5.0 µm diameter displayed displacement jump frequency that was essentially independent of the applied load while the jump frequency increased with increasing load for the smaller 2.5 µm diameter micro-spheres. We suggest that this difference is related to the volume of the micro-sphere. When the volume is small, the component of the deformation that occurs by a stochastic dislocation glide process is increased and becomes strongly dependent upon the magnitude of the local shear stress.


2021 ◽  
Vol 283 ◽  
pp. 01052
Author(s):  
Huajun He ◽  
Huahui Jin

In the engineering of high stress area, the measures to control the stability of surrounding rock by reducing excavation footage and excavation speed are to adjust the unloading rate of surrounding rock caused by excavation. In this study, unloading creep tests of marble under high stress conditions were carried out to study the effect of unloading rate. Research results showed that the axial and lateral instantaneous strain and creep strain of the sample increased with the increase of unloading rate; the lateral creep characteristic of marble under unloading condition was stronger than that of axial creep characteristic, and it was more obvious with the increase of unloading rate; the failure of specimens under unloading creep condition was mainly caused by the rapid increase of lateral strain, and the brittleness of rock was increasing with the increase of unloading rate. The Burgers model was used to describe the creep curves of specimens, and the variation of the parameters with the unloading rate was analyzed. The fitting results showed that the instantaneous elastic modulus E1, E'1 and the viscosity coefficients η1, η'1 all decreased with the increase of the unloading rate, which can be described by linear relationship within the unloading rate range of this experiment. Compared with the time of whole creep tests, the time for each specimen to enter the steady-state creep was similar, it was considered that the effect of unloading rate on η2/E2 and η'2/E'2 can be ignored.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Hyunwook Choo ◽  
Minhyuk Kwon ◽  
Lamia Touiti ◽  
Young-Hoon Jung

Abstract Aims/hypothesis One of the critical mechanisms determining creep in granular materials is the breakage of soil particles. This study aims at evaluating the time-dependent creep deformation of calcareous sand at low effective stress conditions. Methods K0 creep tests were performed for both calcareous and silica sands at low stresses of 65 and 120 kPa, and the results of creep tests were compared with the results of constant rate of strain (CRS) tests at high stress levels up to 12 MPa. For a quantitative evaluation of the effect of the particle breakage on the creep deformation of calcareous sand, the relative breakage ($$B_{r}$$ B r ) was determined based on the results of sieve analyses. Results The results demonstrate that Tunisia calcareous sand experiences significant particle breakage during creep and the consequent creep deformation at low stress level. The determined $$B_{r}$$ B r after creep at low stress level is comparable with that after the CRS test at high stress level. Conclusions High potential of particle breakage inherited by characteristic minerology of the calcareous Tunisia sand significantly influences the creep deformation at low stress level.


2015 ◽  
Vol 52 (7) ◽  
pp. 883-889
Author(s):  
Z. Tomanovic ◽  
B. Miladinovic ◽  
S. Zivaljevic

Time-dependent behaviour of some types of rocks is of the “creep” type, in particular in underground works, mining works, and in measuring procedures of rock properties. Tests used for defining material parameters or parameters relevant to defining a failure or behaviour of a material in the plastic state are usually of significantly shorter duration than the creep test. The duration of creep tests may vary from several hours to several years depending on the material being tested and the phenomenon that is the subject of the research. The required duration of the creep test, which provides reliable definition of the time-dependent material parameters of the rheological model, is a theoretical but also practical issue. The theoretical issue relates to establishing criteria for defining the required duration of the creep test. The practical issue relates to minimizing the duration of the creep test from which the necessary material parameters of the rock mass are obtained for correct numerical calculations. This paper proposes criteria for defining the required duration of a rock creep test, based on analysis of the results of unconfined uniaxial compression tests performed on marly rock samples.


2006 ◽  
Vol 129 (1) ◽  
pp. 82-89 ◽  
Author(s):  
Katsuhiko Sasaki ◽  
Takuji Kobayashi ◽  
Ken-ichi Ohguchi

Time-dependent deformations such as creep and ratchetting of solder alloys are significant deformation phenomena that need to be understood to ensure the safety and reliability of solder joints in electronic packaging. There is much research on creep deformation of solder alloys, but ratchetting deformation, especially the correlation between creep and ratchetting deformation of solder alloys has not been investigated. This paper discusses the correlation between creep and uniaxial ratchetting deformation to establish the differences in the time-dependent deformation of lead-free and lead-containing solder alloys. Uniaxial ratchetting tests were conducted by cyclic tension–compression tests or cyclic tension–unloading tests at several ratios of the maximum to minimum stresses. Additional creep tests following the uniaxial ratchetting were also conducted to observe the effect of the uniaxial ratchetting on creep deformation. An empirical method to select an optimal lead-free solder alloy is discussed by defining a uniaxial ratchetting strain rate. The additional creep tests also show that the uniaxial ratchetting deformation has a strong correlation to the creep deformation and that the correlation is different for lead-free and lead-containing solder alloys.


Author(s):  
Ferenc Deák ◽  
László Kovács ◽  
Péter Mucsi ◽  
Zoltán Máthé

The program for the final disposal of low and intermediate level radioactive waste was established by Paks Nuclear Power Plant, Hungary. Preparation of final disposal has been done as part of a national program since 1993. The Central Nuclear Financial Fund and the Public Limited Company for Radioactive Waste Management (PURAM) have been established to coordinate organizations and activities for all tasks in connection, with nuclear waste treatment. The project was started with a geological screening in order to find the most suitable geological formation for a radioactive waste repository. The selected potential host rock is the Mórágy Granite Formation in the south-western part of Hungary, close to the village of Bátaapáti.This paper show and explain the results of an extensive study of the deformation and fracturing of Mórágy granite samples under uniaxial and triaxial loading conditions. In the investigation, the stress fracturing thresholds (crack initiation, crack coalescence and crack damage) were determined using stress–strain and stiffness curves without acoustic emission (AE) detection technique. Crack initiation was found to be best determined by the volumetric strain curve in both uniaxial and triaxial compression tests. As a detailed investigation, a comprehensive petrographical analysis using a petrological microscope was performed to identify the mode of cracking and the characterization of the cracking pattern.


2021 ◽  
Vol 9 (8) ◽  
pp. 839
Author(s):  
Tarek N. Salem ◽  
Nadia M. Elkhawas ◽  
Ahmed M. Elnady

The erosion of limestone and calcarenite ridges that existed parallel to the Mediterranean shoreline forms the calcareous sand (CS) formation at the surface layer of Egypt's northern coast. The CS is often combined with broken shells which are considered geotechnically problematic due to their possible crushability and relatively high compressibility. In this research, CS samples collected from a site along the northern coast of Egypt are studied to better understand its behavior under normal and shear stresses. Reconstituted CS specimens with different ratios of broken shells (BS) are also investigated to study the effect of BS ratios on the soil mixture strength behavior. The strength is evaluated using laboratory direct-shear and one-dimensional compression tests (oedometer test). The CS specimens are not exposed to significant crushability even under relatively high-stress levels. In addition, a 3D finite element analysis (FEA) is presented in this paper to study the degradation offshore pile capacity in CS having different percentages of BS. The stress–strain results using oedometer tests are compared with a numerical model, and it gave identical matching for most cases. The effects of pile diameter and embedment depth parameters are then studied for the case study on the northern coast. Three different mixing ratios of CS and BS have been used, CS + 10% BS, CS + 30% BS, and CS + 50% BS, which resulted in a decrease of the ultimate vertical compression pile load capacity by 8.8%, 15%, and 16%, respectively.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2350 ◽  
Author(s):  
Jun Peng ◽  
Sheng-Qi Yang

High temperature treatment has a significant influence on the mechanical behavior and the associated microcracking characteristic of rocks. A good understanding of the thermal damage effects on rock behavior is helpful for design and stability evaluation of engineering structures in the geothermal field. This paper studies the mechanical behavior and the acoustic emission (AE) characteristic of three typical rocks (i.e., sedimentary, metamorphic, and igneous), with an emphasis on how the difference in rock type (i.e., porosity and mineralogical composition) affects the rock behavior in response to thermal damage. Compression tests are carried out on rock specimens which are thermally damaged and AE monitoring is conducted during the compression tests. The mechanical properties including P-wave velocity, compressive strength, and Young’s modulus for the three rocks are found to generally show a decreasing trend as the temperature applied to the rock increases. However, these mechanical properties for quartz sandstone first increase to a certain extent and then decrease as the treatment temperature increases, which is mainly attributed to the high porosity of quartz sandstone. The results obtained from stress–strain curve, failure mode, and AE characteristic also show that the failure of quartz-rich rock (i.e., quartz sandstone and granite) is more brittle when compared with that of calcite-rich rock (i.e., marble). However, the ductility is enhanced to some extent as the treatment temperature increases for all the three examined rocks. Due to high brittleness of quartz sandstone and granite, more AE activities can be detected during loading and the recorded AE activities mostly accumulate when the stress approaches the peak strength, which is quite different from the results of marble.


Sign in / Sign up

Export Citation Format

Share Document