Temperature is the major driver of distribution patterns for C4 and C3 BEP grasses along tropical elevation gradients in Hawai‘i, and comparison with worldwide patterns

Botany ◽  
2015 ◽  
Vol 93 (1) ◽  
pp. 9-22 ◽  
Author(s):  
Courtney L. Angelo ◽  
Curtis C. Daehler

The distribution patterns of C4 and C3 grasses in relation to climate have attracted much attention, but few studies have examined grass distributions along tropical elevation gradients. Previous studies identified either temperature, precipitation, or both variables as the major climatic factor(s) driving these distributions. Here we investigated relative dominance of C4 grasses in relation to climate along five elevation gradients in Hawai‘i. The transition temperature between C4 and C3 BEP (Bambusoideae, Ehrhartoideae, and Pooideae) grasses (where their relative dominance is equal) was determined; in our study, the subfamily Bambusoideae was not included. A worldwide synthesis of previous studies testing climatic factors and transition temperatures associated with C4 and C3 grass distributions was also carried out. Mean July maximum temperature was significantly correlated with C4 dominance along all elevation transects in Hawai‘i, while precipitation was only correlated along three transects when precipitation was correlated with temperature. A spatially explicit multiple regression model indicated that C4 relative cover was best explained by temperature. Temperature appears to be the major climatic factor shaping distribution patterns of C4 and C3 BEP grasses in Hawai‘i. According to the worldwide analysis, temperature primarily influenced grass distribution patterns more often in temperate studies (70%) than in tropical studies (45%). Degree of correlation or covariance between temperature and precipitation was rarely reported in previous studies, although this can strongly affect conclusions. C4-C3 BEP transition temperatures (mean July maximum) ranged from 18 to 21 °C in Hawai‘i; these transition temperatures are lower than those reported in temperate localities (26–31 °C), but similar to transition temperatures for other localities at tropical latitudes (21–22 °C). A warming climate is likely to shift C4 grass dominance upward in elevation, threatening higher elevation native communities by perpetuating a grass–fire cycle.

Author(s):  
Roshan Kumar Mehta ◽  
Shree Chandra Shah

The increase in the concentration of greenhouse gases (GHGs) in the atmosphere is widely believed to be causing climate change. It affects agriculture, forestry, human health, biodiversity, and snow cover and aquatic life. Changes in climatic factors like temperature, solar radiation and precipitation have potential to influence agrobiodiversity and its production. An average of 0.04°C/ year and 0.82 mm/year rise in annual average maximum temperature and precipitation respectively from 1975 to 2006 has been recorded in Nepal. Frequent droughts, rise in temperature, shortening of the monsoon season with high intensity rainfall, severe floods, landslides and mixed effects on agricultural biodiversity have been experienced in Nepal due to climatic changes. A survey done in the Chitwan District reveals that lowering of the groundwater table decreases production and that farmers are attracted to grow less water consuming crops during water scarce season. The groundwater table in the study area has lowered nearly one meter from that of 15 years ago as experienced by the farmers. Traditional varieties of rice have been replaced in the last 10 years by modern varieties, and by agricultural crops which demand more water for cultivation. The application of groundwater for irrigation has increased the cost of production and caused severe negative impacts on marginal crop production and agro-biodiversity. It is timely that suitable adaptive measures are identified in order to make Nepalese agriculture more resistant to the adverse impacts of climate change, especially those caused by erratic weather patterns such as the ones experienced recently.DOI: http://dx.doi.org/10.3126/hn.v11i1.7206 Hydro Nepal Special Issue: Conference Proceedings 2012 pp.59-63


2021 ◽  
Vol 12 ◽  
Author(s):  
Domen Arnič ◽  
Jožica Gričar ◽  
Jernej Jevšenak ◽  
Gregor Božič ◽  
Georg von Arx ◽  
...  

European beech (Fagus sylvatica L.) adapts to local growing conditions to enhance its performance. In response to variations in climatic conditions, beech trees adjust leaf phenology, cambial phenology, and wood formation patterns, which result in different tree-ring widths (TRWs) and wood anatomy. Chronologies of tree ring width and vessel features [i.e., mean vessel area (MVA), vessel density (VD), and relative conductive area (RCTA)] were produced for the 1960–2016 period for three sites that differ in climatic regimes and spring leaf phenology (two early- and one late-flushing populations). These data were used to investigate long-term relationships between climatic conditions and anatomical features of four quarters of tree-rings at annual and intra-annual scales. In addition, we investigated how TRW and vessel features adjust in response to extreme weather events (i.e., summer drought). We found significant differences in TRW, VD, and RCTA among the selected sites. Precipitation and maximum temperature before and during the growing season were the most important climatic factors affecting TRW and vessel characteristics. We confirmed differences in climate-growth relationships between the selected sites, late flushing beech population at Idrija showing the least pronounced response to climate. MVA was the only vessel trait that showed no relationship with TRW or other vessel features. The relationship between MVA and climatic factors evaluated at intra-annual scale indicated that vessel area in the first quarter of tree-ring were mainly influenced by climatic conditions in the previous growing season, while vessel area in the second to fourth quarters of tree ring width was mainly influenced by maximum temperature and precipitation in the current growing season. When comparing wet and dry years, beech from all sites showed a similar response, with reduced TRW and changes in intra-annual variation in vessel area. Our findings suggest that changes in temperature and precipitation regimes as predicted by most climate change scenarios will affect tree-ring increments and wood structure in beech, yet the response between sites or populations may differ.


2002 ◽  
Vol 92 (6) ◽  
pp. 659-666 ◽  
Author(s):  
F. Workneh ◽  
C. M. Rush

Sorghum ergot caused by Claviceps africana was observed for the first time in the United States in Southern Texas in 1997. That year there was a widespread ergot epidemic in hybrid seed production fields in the Texas Panhandle. However, occurrence of the disease has been sparse during the past 3 years, easing fears that the hybrid seed industry in the region might be endangered. To determine whether climatic factors were associated with observed variations in prevalence of ergot, weather data (temperature, precipitation, and relative humidity) were collected from seven weather stations in the Texas Panhandle. Sorghum ergot prevalence data for the period 1997 to 2000 were collected from records of seed companies in the Panhandle and related to weather variables. Results showed that, in the southern section of the Panhandle, maximum temperature and precipitation between 1 and 15 August were associated (r2 = 0.98, P = 0.001 and r2 = 0.81, P = 0.0193, respectively) with variations in the prevalence of ergot during the 4-year period. In the northern section, only maximum temperature during 16 to 31 July was significantly associated (r2 = 0.91, P = 0.0111) with disease prevalence. Over all, 1997 was wetter and cooler, during the 1 to 15 August period, than each of the subsequent 3 years. In addition to creating humid conditions for ergot development, precipitation was associated with suppression of maximum temperature, enhancing ergot-favorable temperature conditions. Examination of historic weather data for the region showed that there were many instances in the past where temperature depression was associated with a rise in cumulative precipitation, creating ergot-favorable conditions similar to those in 1997. Cross-spectral analysis was used to determine whether such association is periodic. Weather data from five of the seven locations in the region showed peaks of significant coherency ( α< 0.05) at 2 to 4 years and 7 to 10 years or greater, indicating the existence of a periodic cycle in the temperature-precipitation association. The results of the investigation suggested that association of precipitation with temperature depression is a primary factor in development of ergot in the Texas Panhandle, and such association has a periodic cycle.


Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 426
Author(s):  
Qiang Li ◽  
Suiqi Zhang

Understanding the effects of climate change on potato yield is vital for food security in northwest China. Based on the long-term data of yields and meteorology, this study analysed the impacts of recent climate change on potato yields at a provincial scale in northwest China. The first difference method was used to disentangle the contributions of climate change from the changes in potato yield in two consecutive years. The moving average method was used to decouple the climate-induced yield of potato. The results showed that the yield and planting area of potato from the period 1982 to 2015 increased markedly, with inter-annual fluctuations. The temperature increased significantly during the potato growing period in northwest China, while other climatic factors did not change significantly. Specifically, the changing trends in climatic factors varied among different provinces. The key meteorological factors limiting potato yield were temperature, precipitation and diurnal temperature range, varying in the different provinces. Potato yields in Gansu, Shaanxi, Ningxia and Xinjiang decreased by 127, 289, 199 and 339 kg ha−1, respectively, for every 1 °C increase in daily maximum temperature. The potato yield in Xinjiang decreased by 583 kg ha−1 for every 1 °C increase in daily minimum temperature. For every 100 mm increase in precipitation, the potato yields in Gansu, Qinghai and Ningxia increased by 250, 375 and 182 kg ha−1, respectively. Combining the first difference method and the moving average method, precipitation was the dominant climatic factor affecting potato yield in rain-fed areas (Gansu, Qinghai and Ningxia). For areas with irrigation (Xinjiang) or relatively high rainfall (Shaanxi), maximum temperature was the deciding climatic factor affecting potato yield. Appropriate adaptation to climate change in the different regions will help to ensure potato production in northwest China.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 334
Author(s):  
Norbert Szymański ◽  
Sławomir Wilczyński

The present study identified the similarities and differences in the radial growth responses of 20 provenances of 51-year-old European larch (Larix decidua Mill.) trees from Poland to the climatic conditions at three provenance trials situated in the Polish lowlands (Siemianice), uplands (Bliżyn) and mountains (Krynica). A chronology of radial growth indices was developed for each of 60 European larch populations, which highlighted the interannual variations in the climate-mediated radial growth of their trees. With the aid of principal component, correlation and multiple regression analysis, supra-regional climatic elements were identified to which all the larch provenances reacted similarly at all three provenance trials. They increased the radial growth in years with a short, warm and precipitation-rich winter; a cool and humid summer and when high precipitation in late autumn of the previous year was noted. Moreover, other climatic elements were identified to which two groups of the larch provenances reacted differently at each provenance trial. In the lowland climate, the provenances reacted differently to temperature in November to December of the previous year and July and to precipitation in September. In the upland climate, the provenances differed in growth sensitivity to precipitation in October of the previous year and June–September. In the mountain climate, the provenances responded differently to temperature and precipitation in September of the previous year and to precipitation in February, June and September of the year of tree ring formation. The results imply that both climatic factors and origin (genotype), i.e., the genetic factor, mediate the climate–growth relationships of larch provenances.


2021 ◽  
Vol 5 (3) ◽  
pp. 481-497
Author(s):  
Mansour Almazroui ◽  
Fahad Saeed ◽  
Sajjad Saeed ◽  
Muhammad Ismail ◽  
Muhammad Azhar Ehsan ◽  
...  

AbstractThis paper presents projected changes in extreme temperature and precipitation events by using Coupled Model Intercomparison Project phase 6 (CMIP6) data for mid-century (2036–2065) and end-century (2070–2099) periods with respect to the reference period (1985–2014). Four indices namely, Annual maximum of maximum temperature (TXx), Extreme heat wave days frequency (HWFI), Annual maximum consecutive 5-day precipitation (RX5day), and Consecutive Dry Days (CDD) were investigated under four socioeconomic scenarios (SSP1-2.6; SSP2-4.5; SSP3-7.0; SSP5-8.5) over the entire globe and its 26 Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX) regions. The projections show an increase in intensity and frequency of hot temperature and precipitation extremes over land. The intensity of the hottest days (as measured by TXx) is projected to increase more in extratropical regions than in the tropics, while the frequency of extremely hot days (as measured by HWFI) is projected to increase more in the tropics. Drought frequency (as measured by CDD) is projected to increase more over Brazil, the Mediterranean, South Africa, and Australia. Meanwhile, the Asian monsoon regions (i.e., South Asia, East Asia, and Southeast Asia) become more prone to extreme flash flooding events later in the twenty-first century as shown by the higher RX5day index projections. The projected changes in extremes reveal large spatial variability within each SREX region. The spatial variability of the studied extreme events increases with increasing greenhouse gas concentration (GHG) and is higher at the end of the twenty-first century. The projected change in the extremes and the pattern of their spatial variability is minimum under the low-emission scenario SSP1-2.6. Our results indicate that an increased concentration of GHG leads to substantial increases in the extremes and their intensities. Hence, limiting CO2 emissions could substantially limit the risks associated with increases in extreme events in the twenty-first century.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Peixin Ren ◽  
Zelin Liu ◽  
Xiaolu Zhou ◽  
Changhui Peng ◽  
Jingfeng Xiao ◽  
...  

Abstract Background Vegetation phenology research has largely focused on temperate deciduous forests, thus limiting our understanding of the response of evergreen vegetation to climate change in tropical and subtropical regions. Results Using satellite solar-induced chlorophyll fluorescence (SIF) and MODIS enhanced vegetation index (EVI) data, we applied two methods to evaluate temporal and spatial patterns of the end of the growing season (EGS) in subtropical vegetation in China, and analyze the dependence of EGS on preseason maximum and minimum temperatures as well as cumulative precipitation. Our results indicated that the averaged EGS derived from the SIF and EVI based on the two methods (dynamic threshold method and derivative method) was later than that derived from gross primary productivity (GPP) based on the eddy covariance technique, and the time-lag for EGSsif and EGSevi was approximately 2 weeks and 4 weeks, respectively. We found that EGS was positively correlated with preseason minimum temperature and cumulative precipitation (accounting for more than 73% and 62% of the study areas, respectively), but negatively correlated with preseason maximum temperature (accounting for more than 59% of the study areas). In addition, EGS was more sensitive to the changes in the preseason minimum temperature than to other climatic factors, and an increase in the preseason minimum temperature significantly delayed the EGS in evergreen forests, shrub and grassland. Conclusions Our results indicated that the SIF outperformed traditional vegetation indices in capturing the autumn photosynthetic phenology of evergreen forest in the subtropical region of China. We found that minimum temperature plays a significant role in determining autumn photosynthetic phenology in the study region. These findings contribute to improving our understanding of the response of the EGS to climate change in subtropical vegetation of China, and provide a new perspective for accurately evaluating the role played by evergreen vegetation in the regional carbon budget.


Author(s):  
Sonam S. Dash ◽  
Dipaka R. Sena ◽  
Uday Mandal ◽  
Anil Kumar ◽  
Gopal Kumar ◽  
...  

Abstract The hydrologic behaviour of the Brahmani River basin (BRB) (39,633.90 km2), India was assessed for the base period (1970–1999) and future climate scenarios (2050) using the Soil and Water Assessment Tool (SWAT). Monthly streamflow data of 2000–2009 and 2010–2012 was used for calibration and validation, respectively, and performed satisfactorily with Nash-Sutcliffe Efficiency (ENS) of 0.52–0.55. The projected future climatic outcomes of the HadGEM2-ES model indicated that minimum temperature, maximum temperature, and precipitation may increase by 1.11–3.72 °C, 0.27–2.89 °C, and 16–263 mm, respectively, by 2050. The mean annual streamflow over the basin may increase by 20.86, 11.29, 4.45, and 37.94% under RCP 2.6, 4.5, 6.0, and 8.5, respectively, whereas the sediment yield is likely to increase by 23.34, 10.53, 2.45, and 27.62% under RCP 2.6, 4.5, 6.0, and 8.5, respectively, signifying RCP 8.5 to be the most adverse scenario for the BRB. Moreover, a ten-fold increase in environmental flow (defined as Q90) by the mid-century period is expected under the RCP 8.5 scenario. The vulnerable area assessment revealed that the increase in moderate and high erosion-prone regions will be more prevalent in the mid-century. The methodology developed herein could be successfully implemented for identification and prioritization of critical zones in worldwide river basins.


2014 ◽  
Vol 53 (9) ◽  
pp. 2148-2162 ◽  
Author(s):  
Bárbara Tencer ◽  
Andrew Weaver ◽  
Francis Zwiers

AbstractThe occurrence of individual extremes such as temperature and precipitation extremes can have a great impact on the environment. Agriculture, energy demands, and human health, among other activities, can be affected by extremely high or low temperatures and by extremely dry or wet conditions. The simultaneous or proximate occurrence of both types of extremes could lead to even more profound consequences, however. For example, a dry period can have more negative consequences on agriculture if it is concomitant with or followed by a period of extremely high temperatures. This study analyzes the joint occurrence of very wet conditions and high/low temperature events at stations in Canada. More than one-half of the stations showed a significant positive relationship at the daily time scale between warm nights (daily minimum temperature greater than the 90th percentile) or warm days (daily maximum temperature above the 90th percentile) and heavy-precipitation events (daily precipitation exceeding the 75th percentile), with the greater frequencies found for the east and southwest coasts during autumn and winter. Cold days (daily maximum temperature below the 10th percentile) occur together with intense precipitation more frequently during spring and summer. Simulations by regional climate models show good agreement with observations in the seasonal and spatial variability of the joint distribution, especially when an ensemble of simulations was used.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhe Yuan ◽  
Yongqiang Wang ◽  
Jijun Xu ◽  
Zhiguang Wu

AbstractThe ecosystem of the Source Region of Yangtze River (SRYR) is highly susceptible to climate change. In this study, the spatial–temporal variation of NPP from 2000 to 2014 was analyzed, using outputs of Carnegie–Ames–Stanford Approach model. Then the correlation characteristics of NPP and climatic factors were evaluated. The results indicate that: (1) The average NPP in the SRYR is 100.0 gC/m2 from 2000 to 2014, and it shows an increasing trend from northwest to southeast. The responses of NPP to altitude varied among the regions with the altitude below 3500 m, between 3500 to 4500 m and above 4500 m, which could be attributed to the altitude associated variations of climatic factors and vegetation types; (2) The total NPP of SRYR increased by 0.18 TgC per year in the context of the warmer and wetter climate during 2000–2014. The NPP was significantly and positively correlated with annual temperature and precipitation at interannual time scales. Temperature in February, March, May and September make greater contribution to NPP than that in other months. And precipitation in July played a more crucial role in influencing NPP than that in other months; (3) Climatic factors caused the NPP to increase in most of the SRYR. Impacts of human activities were concentrated mainly in downstream region and is the primary reason for declines in NPP.


Sign in / Sign up

Export Citation Format

Share Document