Substitution effects and electronic properties of the azo dye (1-phenylazo-2-naphthol) species: a TD-DFT electronic spectra investigation

2015 ◽  
Vol 93 (5) ◽  
pp. 509-517 ◽  
Author(s):  
Lakhdar Mansouri ◽  
Bachir Zouchoune

DFT/B3LYP and ab initio Hartree–Fock calculations with full geometry optimization have been carried out on hydrazo and azo forms of 1-phenylazo-2-naphthol and their substituted derivatives. The predicted geometries show that a small energy difference of 1.8 kcal/mol might tune the equilibrium between both forms. Depending on the electron donating and electron accepting of the different used substituents (CF3, NH2, CH3, Cl, and NO2), the various obtained isomers show small energy differencies between meta and para substitution except for the NH2 one, indicating the coexistence of the tautomers in solution. The ortho(C12) position was found to be the less favored substitution in all cases, while the second ortho(C16) position for different substituents provides isomers competing with the most stable meta and para ones. The obtained results suggest that a judicious choice in the substituents’ use on the phenyl ring should lead to stabilization. The TD-DFT theoretical study performed on the optimized geometry allowed us to identify quite clearly the spectral position and the nature of the different electronic transitions according to their molecular orbital localization, hence, reproducing the available UV-Vis spectra. The increase in the wavelength values is in perfect agreement with red shifts and the ΔE (ELUMO – EHOMO) decreasing. Thus, from the point of view of both substitution and the used solvent, the obtained electronic spectra appear to behave quite differently.

BIBECHANA ◽  
2021 ◽  
Vol 18 (1) ◽  
pp. 91-99
Author(s):  
S Shrestha ◽  
N Bhusal ◽  
S. Byahut ◽  
C. K. Sarkar

The study of superlattice (SL) system in lower dimensions, which shows tunneling and oscillation of particles, is very interesting from the point of view of fundamental physics and is important for devices. Here, we present results of our calculations related to tunneling/oscillations in a general SL system using a Symmetrical Quadruple Well (SQW) potential. This class of problems is handled using a transfer matrix (T-matrix), which is obtained by taking the solution of Schroedinger equation with appropriate boundary conditions on either side of SQW and then repeatedly applying it for the SL system. The electron wave functions in the system are found to be either in a symmetric or an anti-symmetric state with a very small energy difference between the two, leading to oscillations between these states. In this study, probability density and period of oscillation of the particle in SQW is calculated. The result is useful for high frequency operations in devices using SL. BIBECHANA 18 (2021) 91-99


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3574
Author(s):  
Thammarat Aree

Protocatechuic aldehyde (PCAL) and protocatechuic acid (PCAC) are catechol derivatives and have broad therapeutic effects associated with their antiradical activity. Their pharmacological and physicochemical properties have been improved via the cyclodextrin (CD) encapsulation. Because the characteristics of b-CD inclusion complexes with PCAL (1) and PCAC (2) are still equivocal, we get to the bottom of the inclusion complexation by an integrated study of single-crystal X-ray diffraction and DFT full-geometry optimization. X-ray analysis unveiled that PCAL and PCAC are nearly totally shielded in the b-CD wall. Their aromatic rings are vertically aligned in the b-CD cavity such that the functional groups on the opposite side of the ring (3,4-di(OH) and 1-CHO/1-COOH groups) are placed nearby the O6–H and O2–H/O3–H rims, respectively. The preferred inclusion modes in 1 and 2 help to establish crystal contacts of OH×××O H-bonds with the adjacent b-CD OH groups and water molecules. By contrast, the DFT-optimized structures of both complexes in the gas phase are thermodynamically stable via the four newly formed host–guest OH⋯O H-bonds. The intermolecular OH×××O H-bonds between PCAL/PCAC 3,4-di(OH) and b-CD O6–H groups, and the shielding of OH groups in the b-CD wall help to stabilize these antioxidants in the b-CD cavity, as observed in our earlier studies. Moreover, PCAL and PCAC in distinct lattice environments are compared for insights into their structural flexibility.


2013 ◽  
Vol 91 (9) ◽  
pp. 872-878 ◽  
Author(s):  
Stanislav R. Stoyanov ◽  
Cindy-Xing Yin ◽  
Murray R. Gray ◽  
Jeffrey M. Stryker ◽  
Sergey Gusarov ◽  
...  

The vanadium and nickel components in heavy oils and bitumen are important impurities in catalytic processing and form aggregates with other asphaltene components. Metalloporphyrins are commonly analyzed using the characteristic Soret band in the UV–vis absorption spectrum. However, the Soret band of metalloporphyrins in petroleum is broadened and weaker than expected based on the concentration of Ni and V in heavy oils and the extinction coefficients of isolated porphyrins. We hypothesize that the low intensity and broadening of the Soret band could be due to axial coordination of the metal center or fusion (annelation) of aromatic rings on the porphyrin π-system. This hypothesis is examined using the density functional theory for geometry optimization and time-dependent density functional theory (TD-DFT) for calculation of excited states of nickel(II) and vanadyl porphyrins with axially coordinated ligands and annelated polyaromatic hydrocarbons. Predictions of the excited electronic states performed using the tandem of TD-DFT and conductor-like polarizable continuum model of solvation support this hypothesis and provide insight into the extent of Soret band broadening and intensity decrease due to coordination and annelation. These computational results, validated with respect to visible absorption spectra, are important for understanding asphaltene aggregation and spectroscopic characterization and suggest methods for removal of transition metals from heavy oil.


2021 ◽  
Author(s):  
Amir H. Hakimioun ◽  
Elisabeth M. Dietze ◽  
Bart D. Vandegehuchte ◽  
Daniel Curulla-Ferre ◽  
Lennart Joos ◽  
...  

AbstractThis study evaluates the finite size effect on the oxygen adsorption energy of coinage metal (Cu, Ag and Au) cuboctahedral nanoparticles in the size range of 13 to 1415 atoms (0.7–3.5 nm in diameter). Trends in particle size effects are well described with single point calculations, in which the metal atoms are frozen in their bulk position and the oxygen atom is added in a location determined from periodic surface calculations. This is shown explicitly for Cu nanoparticles, for which full geometry optimization only leads to a constant offset between relaxed and unrelaxed adsorption energies that is independent of particle size. With increasing cluster size, the adsorption energy converges systematically to the limit of the (211) extended surface. The 55-atomic cluster is an outlier for all of the coinage metals and all three materials show similar behavior with respect to particle size. Graphic Abstract


2011 ◽  
Vol 66 (3) ◽  
pp. 269-274
Author(s):  
Samir F. Matar

We address the changes in the electronic structure brought by the insertion of hydrogen into ThCo leading to the experimentally observed ThCoH4. Full geometry optimization positions the hydrogen in three sites stabilized in the expanded intermetallic matrix. From a Bader charge analysis, hydrogen is found to be in a narrow iono-covalent (~−0.6) to covalent (~−0.3) bonding which should enable site-selective desorption. The overall chemical picture shows a positively charged Thδ+ with the negative charge redistributed over a complex anion {CoH4}δ− with δ~1.8. Nevertheless this charge transfer remains far from the one in the more ionic hydridocobaltate anion CoH54− in Mg2CoH5, due to the largely electropositive character of Mg.


2018 ◽  
Vol 1160 ◽  
pp. 215-221 ◽  
Author(s):  
Igor O. Akchurin ◽  
Anna I. Yakhutina ◽  
Andrei Y. Bochkov ◽  
Natalya P. Solovjova ◽  
Michael G. Medvedev ◽  
...  

2021 ◽  
Vol 14 (8) ◽  
pp. 812
Author(s):  
Thammarat Aree

Depression, a global mental illness, is worsened due to the coronavirus disease 2019 (COVID-2019) pandemic. Tricyclic antidepressants (TCAs) are efficacious for the treatment of depression, even though they have more side effects. Cyclodextrins (CDs) are powerful encapsulating agents for improving molecular stability, water solubility, and lessening the undesired effects of drugs. Because the atomic-level understanding of the β-CD–TCA inclusion complexes remains elusive, we carried out a comprehensive structural study via single-crystal X-ray diffraction and density functional theory (DFT) full-geometry optimization. Here, we focus on two complexes lining on the opposite side of the β-CD–TCA stability spectrum based on binding constants (Kas) in solution, β-CD–protriptyline (PRT) 1—most stable and β-CD–maprotiline (MPL) and 2—least stable. X-ray crystallography unveiled that in the β-CD cavity, the PRT B-ring and MPL A-ring are aligned at a nearly perfect right angle against the O4 plane and primarily maintained in position by intermolecular C–H···π interactions. The increased rigidity of the tricyclic cores is arising from the PRT -CH=CH- bridge widens, and the MPL -CH2–CH2- flexure narrows the butterfly angles, facilitating the deepest and shallower insertions of PRT B-ring (1) and MPL A-ring (2) in the distorted round β-CD cavity for better complexation. This is indicated by the DFT-derived complex stabilization energies (ΔEstbs), although the complex stability orders based on Kas and ΔEstbs are different. The dispersion and the basis set superposition error (BSSE) corrections were considered to improve the DFT results. Plus, the distinctive 3D arrangements of 1 and 2 are discussed. This work provides the first crystallographic evidence of PRT and MPL stabilized in the β-CD cavity, suggesting the potential application of CDs for efficient drug delivery.


2017 ◽  
Vol 16 (04) ◽  
pp. 1750034 ◽  
Author(s):  
Kolsoom Shayan ◽  
Alireza Nowroozi

In the first part of this paper, a comprehensive theoretical study of molecular structure, stability, intramolecular hydrogen bond (IMHB) and [Formula: see text]-electron delocalization ([Formula: see text]-ED) of the enol and thiol tautomers of 3-thioxopropanal (TPA) in the ground state is performed. In this regard, all of the plausible conformations of TPA at M06-2X/6-311[Formula: see text]G(d,p) are optimized and a variety of theoretical levels are employed to identify the global minimum. Our calculations show that E1 is the most stable form that is in contrast to the results of Gonzalez et al. [J Phys Chem 101: 9710, 1997]. In order to elucidate this duality, the IMHB and [Formula: see text]-ED of chelated forms (E1 and T1) have been extensively investigated. So, it is found that both of the IMHB analysis and [Formula: see text]-ED concepts emphasize on the E1, as the global minimum. In the second part of this study, a set of simple electron-withdrawing and electron-donating substituents such as CN, F, Cl, CH3 and NH2 have been considered to evaluate their effects on the IMHB of the first singlet excited state of E1 and T1 at TD-DFT/6–311[Formula: see text]G(d,p) level of theory. According to our analysis, it was found that the IMHB strength of the excited states are much weaker than the ground states. Surprisingly, the IMHB of thiol derivatives is stronger than the enol ones in contrast to the ground state. Furthermore, the substitution effects in the ground and excited states are significantly different. Finally, various linear correlations between the IMHB energies with geometrical, topological and molecular orbital parameters are obtained.


2019 ◽  
Vol 43 (15) ◽  
pp. 6032-6039
Author(s):  
Songyan Feng ◽  
Xugeng Guo ◽  
Jinglai Zhang

The present results reveal that the dominant charge transfer characteristics in the S1 and T1 states produce a small energy difference between the two states, and consequently an efficient reverse intersystem crossing process and a high fluorescence efficiency.


2011 ◽  
Vol 171 ◽  
pp. 121-126 ◽  
Author(s):  
Ashmi T. Patel ◽  
Kirit N. Lad ◽  
Arun Pratap

Knowledge of glass forming ability (GFA) of amorphous metallic alloys is very important from both theoretical and practical point of view. Thermodynamically, the Gibbs free energy difference, ΔG between the undercooled liquid and the corresponding crystalline state is driving force for crystallization. As a consequence, it is a good indicator for glass forming ability of metallic glasses. A novel expression for ΔG has been used to estimate the GFA of recently developed Ca-based bulk metallic glasses viz. Ca53Mg23Cu24,Ca65Mg15Cu20,Ca40Mg25Cu35, Ca50Mg22.5Cu27.5 and Ca55Mg15Cu30. Different GFA criteria are also evaluated for systems taken up in the study and effect of addition of variation in composition of Ca-Mg-Cu system is also investigated. Present work suggests that among different GFA criteria, ΔG is the best criterion for the prediction of GFA for Ca-based bulk metallic glasses.


Sign in / Sign up

Export Citation Format

Share Document