scholarly journals Exploration of the 150 cavity and the role of serendipity in the discovery of inhibitors of influenza virus A neuraminidase

2018 ◽  
Vol 96 (2) ◽  
pp. 91-101 ◽  
Author(s):  
Sankar Mohan ◽  
B. Mario Pinto

Influenza pandemics are an ongoing threat for the human population, as the avian influenza viruses H5N1 and H7N9 continue to circulate in the bird population and the chance of avian to human transmission increases. Neuraminidase, a glycoprotein located on the surface of the influenza virus, plays a crucial role in the viral replication process and, hence, has proven to be a useful target enzyme for the treatment of influenza infections. The discovery that certain subtypes of influenza neuraminidase have an additional cavity, the 150 cavity, near the substrate binding site has triggered considerable interest in the design of influenza inhibitors that exploit this feature. Currently available antiviral drugs, neuraminidase inhibitors oseltamivir and zanamivir, were designed using crystal structures predating this discovery by some years. This mini review is aimed at summarizing our group’s efforts, together with related work from other groups, on neuraminidase inhibitors that are designed to exploit both the catalytic site and the 150 cavity. The design of a parent scaffold that yields a potent inhibitor that is active in cell culture assays and retains activity against several neuraminidases from mutant strains is also described. Finally, the role of serendipity in the discovery of a new class of potent neuraminidase inhibitors with a novel spirolactam scaffold is also highlighted.

2013 ◽  
Vol 10 (79) ◽  
pp. 20120804 ◽  
Author(s):  
V. L. Brown ◽  
J. M. Drake ◽  
D. E. Stallknecht ◽  
J. D. Brown ◽  
K. Pedersen ◽  
...  

Avian influenza viruses (AIVs) have been implicated in all human influenza pandemics in recent history. Despite this, surprisingly little is known about the mechanisms underlying the maintenance and spread of these viruses in their natural bird reservoirs. Surveillance has identified an AIV ‘hotspot’ in shorebirds at Delaware Bay, in which prevalence is estimated to exceed other monitored sites by an order of magnitude. To better understand the factors that create an AIV hotspot, we developed and parametrized a mechanistic transmission model to study the simultaneous epizootiological impacts of multi-species transmission, seasonal breeding, host migration and mixed transmission routes. We scrutinized our model to examine the potential for an AIV hotspot to serve as a ‘gateway’ for the spread of novel viruses into North America. Our findings identify the conditions under which a novel influenza virus, if introduced into the system, could successfully invade and proliferate.


2000 ◽  
Vol 182 (12) ◽  
pp. 3475-3481 ◽  
Author(s):  
Jung Hyeob Roh ◽  
Samuel Kaplan

ABSTRACT Previously, we reported that rdxB, encoding a likely membrane-bound two [4Fe-4S]-containing center, is involved in the aerobic regulation of photosystem gene expression in Rhodobacter sphaeroides 2.4.1. To further investigate the role ofrdxB as well as other genes of the rdxBHISoperon on photosystem gene expression, we constructed a series of nonpolar, in-frame deletion mutations in each of the rdxgenes. Using both puc and puf operonlacZ fusions to monitor photosystem gene expression, under aerobic conditions, in each of the mutant strains revealed significant increased photosynthesis gene expression. In the case of mutations in either rdxH, rdxI, or rdxS, the aerobic induction of photosystem gene expression is believed to be indirect by virtue of a posttranscriptional effect oncbb 3 cytochrome oxidase structure and integrity. For RdxB, we suggest that this redox protein has a more direct effect on photosystem gene expression by virtue of its interaction with the cbb 3 oxidase. An associated phenotype, involving the enhanced conversion of the carotenoid spheroidene to spheroidenone, is also observed in the RdxB, -H, -I, and -S mutant strains. This phenotype is also suggested to be the result of the role of the rdxBHIS locus incbb 3 oxidase activity and/or structure. RdxI is suggested to be a new class of metal transporter of the CPx-type ATPases.


Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2057
Author(s):  
Eun-Jee Na ◽  
Young-Sik Kim ◽  
Yoon-Ji Kim ◽  
Jun-Soo Park ◽  
Jae-Ku Oem

H7 low pathogenic avian influenza viruses (LPAIVs) can mutate into highly pathogenic avian influenza viruses (HPAIVs). In addition to avian species, H7 avian influenza viruses (AIVs) also infect humans. In this study, two AIVs, H7N9 (20X-20) and H7N7 (34X-2), isolated from the feces of wild birds in South Korea in 2021, were genetically analyzed. The HA cleavage site of the two H7 Korean viruses was confirmed to be ELPKGR/GLF, indicating they are LPAIVs. There were no amino acid substitutions at the receptor-binding site of the HA gene of two H7 Korean viruses compared to that of A/Anhui/1/2013 (H7N9), which prefer human receptors. In the phylogenetic tree analysis, the HA gene of the two H7 Korean viruses shared the highest nucleotide similarity with the Korean H7 subtype AIVs. In addition, the HA gene of the two H7 Korean viruses showed high nucleotide similarity to that of the A/Jiangsu/1/2018(H7N4) virus, which is a human influenza virus originating from avian influenza virus. Most internal genes (PB2, PB1, PA, NP, NA, M, and NS) of the two H7 Korean viruses belonged to the Eurasian lineage, except for the M gene of 34X-2. This result suggests that active reassortment occurred among AIVs. In pathogenicity studies of mice, the two H7 Korean viruses replicated in the lungs of mice. In addition, the body weight of mice infected with 34X-2 decreased 7 days post-infection (dpi) and inflammation was observed in the peribronchiolar and perivascular regions of the lungs of mice. These results suggest that mammals can be infected with the two H7 Korean AIVs. Our data showed that even low pathogenic H7 AIVs may infect mammals, including humans, as confirmed by the A/Jiangsu/1/2018(H7N4) virus. Therefore, continuous monitoring and pathogenicity assessment of AIVs, even of LPAIVs, are required.


2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Lin Liu ◽  
Ying Zhang ◽  
Pengfei Cui ◽  
Congcong Wang ◽  
Xianying Zeng ◽  
...  

Abstract Background In 2017–2018, a new highly pathogenic H5N6 avian influenza virus (AIV) variant appeared in poultry and wild birds in Asian and European countries and caused multiple outbreaks. These variant strains are different from the H5N6 virus associated with human infection in previous years, and their genetic taxonomic status and antigenicity have changed. Therefore, revision of the primers and probes of fluorescent RT-PCR is important to detect the new H5N6 subtype AIV in poultry and reduce the risk of an epidemic in birds or humans. Methods In this study, the primers and probes including three groups of HA and four groups of NA for H5N6 influenza virus were evaluated. Then a set of ideal primer and probes were selected to further optimize the reaction system and established a method of double rRT-PCR assay. The specificity of this method was determined by using H1~H16 subtype AIV. Results The results showed that fluorescence signals were obtained for H5 virus in FAM channel and N6 virus in VIC channel, and no fluorescent signal was observed in other subtypes of avian influenza viruses. The detection limit of this assay was 69 copies for H5 and 83 copies for N6 gene. And, the variability tests of intra- and inter-assay showed excellent reproducibility. Moreover, this assay showed 100% agreement with virus isolation method in detecting samples from poultry. Conclusion The duplex rRT-PCR assay presented here has high specificity, sensitivity and reproducibility, and can be used for laboratory surveillance and rapid diagnosis of newly emerged H5N6 subtype avian influenza viruses.


2020 ◽  
Vol 94 (12) ◽  
Author(s):  
Thomas P. Peacock ◽  
Olivia C. Swann ◽  
Hamish A. Salvesen ◽  
Ecco Staller ◽  
P. Brian Leung ◽  
...  

ABSTRACT Avian influenza viruses occasionally infect and adapt to mammals, including humans. Swine are often described as “mixing vessels,” being susceptible to both avian- and human-origin viruses, which allows the emergence of novel reassortants, such as the precursor to the 2009 H1N1 pandemic. ANP32 proteins are host factors that act as influenza virus polymerase cofactors. In this study, we describe how swine ANP32A, uniquely among the mammalian ANP32 proteins tested, supports the activity of avian-origin influenza virus polymerases and avian influenza virus replication. We further show that after the swine-origin influenza virus emerged in humans and caused the 2009 pandemic, it evolved polymerase gene mutations that enabled it to more efficiently use human ANP32 proteins. We map the enhanced proviral activity of swine ANP32A to a pair of amino acids, 106 and 156, in the leucine-rich repeat and central domains and show these mutations enhance binding to influenza virus trimeric polymerase. These findings help elucidate the molecular basis for the mixing vessel trait of swine and further our understanding of the evolution and ecology of viruses in this host. IMPORTANCE Avian influenza viruses can jump from wild birds and poultry into mammalian species such as humans or swine, but they only continue to transmit if they accumulate mammalian adapting mutations. Pigs appear uniquely susceptible to both avian and human strains of influenza and are often described as virus “mixing vessels.” In this study, we describe how a host factor responsible for regulating virus replication, ANP32A, is different between swine and humans. Swine ANP32A allows a greater range of influenza viruses, specifically those from birds, to replicate. It does this by binding the virus polymerase more tightly than the human version of the protein. This work helps to explain the unique properties of swine as mixing vessels.


2008 ◽  
Vol 15 (7) ◽  
pp. 1042-1053 ◽  
Author(s):  
Bruce D. Forrest ◽  
Michael W. Pride ◽  
Andrew J. Dunning ◽  
Maria Rosario Z. Capeding ◽  
Tawee Chotpitayasunondh ◽  
...  

ABSTRACT The highly sensitive gamma interferon (IFN-γ) enzyme-linked immunosorbent spot (ELISPOT) assay permits the investigation of the role of cell-mediated immunity (CMI) in the protection of young children against influenza. Preliminary studies of young children confirmed that the IFN-γ ELISPOT assay was a more sensitive measure of influenza memory immune responses than serum antibody and that among seronegative children aged 6 to <36 months, an intranasal dose of 107 fluorescent focus units (FFU) of a live attenuated influenza virus vaccine (CAIV-T) elicited substantial CMI responses. A commercial inactivated influenza virus vaccine elicited CMI responses only in children with some previous exposure to related influenza viruses as determined by detectable antibody levels prevaccination. The role of CMI in actual protection against community-acquired, culture-confirmed clinical influenza by CAIV-T was investigated in a large randomized, double-blind, placebo-controlled dose-ranging efficacy trial with 2,172 children aged 6 to <36 months in the Philippines and Thailand. The estimated protection curve indicated that the majority of infants and young children with ≥100 spot-forming cells/106 peripheral blood mononuclear cells were protected against clinical influenza, establishing a possible target level of CMI for future influenza vaccine development. The ELISPOT assay for IFN-γ is a sensitive and reproducible measure of CMI and memory immune responses and contributes to establishing requirements for the future development of vaccines against influenza, especially those used for children.


2015 ◽  
Vol 89 (21) ◽  
pp. 10762-10773 ◽  
Author(s):  
Rebecca L. Y. Fan ◽  
Sophie A. Valkenburg ◽  
Chloe K. S. Wong ◽  
Olive T. W. Li ◽  
John M. Nicholls ◽  
...  

ABSTRACTSeasonal influenza epidemics and occasional pandemics threaten public health worldwide. New alternative strategies for generating recombinant viruses with vaccine potential are needed. Interestingly, influenza viruses circulating in different hosts have been found to have distinct codon usage patterns, which may reflect host adaptation. We therefore hypothesized that it is possible to make a human seasonal influenza virus that is specifically attenuated in human cells but not in eggs by converting its codon usage so that it is similar to that observed from avian influenza viruses. This approach might help to generate human live attenuated viruses without affecting their yield in eggs. To test this hypothesis, over 300 silent mutations were introduced into the genome of a seasonal H1N1 influenza virus. The resultant mutant was significantly attenuated in mammalian cells and mice, yet it grew well in embryonated eggs. A single dose of intranasal vaccination induced potent innate, humoral, and cellular immune responses, and the mutant could protect mice against homologous and heterologous viral challenges. The attenuated mutant could also be used as a vaccine master donor strain by introducing hemagglutinin and neuraminidase genes derived from other strains. Thus, our approach is a successful strategy to generate attenuated viruses for future application as vaccines.IMPORTANCEVaccination has been one of the best protective measures in combating influenza virus infection. Current licensed influenza vaccines and their production have various limitations. Our virus attenuation strategy makes use of the codon usage biases of human and avian influenza viruses to generate a human-derived influenza virus that is attenuated in mammalian hosts. This method, however, does not affect virus replication in eggs. This makes the resultant mutants highly compatible with existing egg-based vaccine production pipelines. The viral proteins generated from the codon bias mutants are identical to the wild-type viral proteins. In addition, our massive genome-wide mutational approach further minimizes the concern over reverse mutations. The potential use of this kind of codon bias mutant as a master donor strain to generate other live attenuated viruses is also demonstrated. These findings put forward a promising live attenuated influenza vaccine generation strategy to control influenza.


2019 ◽  
Vol 7 ◽  
pp. 251513551882162 ◽  
Author(s):  
Ivette A. Nuñez ◽  
Ted M. Ross

Highly pathogenic avian influenza viruses (HPAIVs), originating from the A/goose/Guangdong/1/1996 H5 subtype, naturally circulate in wild-bird populations, particularly waterfowl, and often spill over to infect domestic poultry. Occasionally, humans are infected with HPAVI H5N1 resulting in high mortality, but no sustained human-to-human transmission. In this review, the replication cycle, pathogenicity, evolution, spread, and transmission of HPAIVs of H5Nx subtypes, along with the host immune responses to Highly Pathogenic Avian Influenza Virus (HPAIV) infection and potential vaccination, are discussed. In addition, the potential mechanisms for Highly Pathogenic Avian Influenza Virus (HPAIV) H5 Reassorted Viruses H5N1, H5N2, H5N6, H5N8 (H5Nx) viruses to transmit, infect, and adapt to the human host are reviewed.


Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1399 ◽  
Author(s):  
Jianzhou Cui ◽  
Dhakshayini Morgan ◽  
Dao Han Cheng ◽  
Sok Lin Foo ◽  
Gracemary L. R. Yap ◽  
...  

Influenza viruses have been shown to use autophagy for their survival. However, the proteins and mechanisms involved in the autophagic process triggered by the influenza virus are unclear. Annexin-A1 (ANXA1) is an immunomodulatory protein involved in the regulation of the immune response and Influenza A virus (IAV) replication. In this study, using clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 (CRISPR associated protein 9) deletion of ANXA1, combined with the next-generation sequencing, we systematically analyzed the critical role of ANXA1 in IAV infection as well as the detailed processes governing IAV infection, such as macroautophagy. A number of differentially expressed genes were uniquely expressed in influenza A virus-infected A549 parental cells and A549 ∆ANXA1 cells, which were enriched in the immune system and infection-related pathways. Gene ontology and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway revealed the role of ANXA1 in autophagy. To validate this, the effect of mechanistic target of rapamycin (mTOR) inhibitors, starvation and influenza infection on autophagy was determined, and our results demonstrate that ANXA1 enhances autophagy induced by conventional autophagy inducers and influenza virus. These results will help us to understand the underlying mechanisms of IAV infection and provide a potential therapeutic target for restricting influenza viral replication and infection.


Sign in / Sign up

Export Citation Format

Share Document