Simultaneous effects of nano-silica and basalt fiber on mechanical properties and durability of cementitious mortar: An Experimental Study

Author(s):  
Mehrdad Razzaghian Ghadikolaee ◽  
Mehdi Mirzaei ◽  
Asghar Habibnejad Korayem

This study investigated the single and hybrid effects of nanosilica and basalt fiber on mechanical properties, and durability of mortar. Results showed that basalt fiber could remarkably increase the indirect tensile strength, whereas the compressive strength and durability properties were not significantly improved by basalt fiber. However, incorporation of nanosilica in the mortar containing basalt fibers (NSB) could acceptably compensate for this weakness of basalt fiber-reinforced mortar (BF) and remarkably improve not only the compressive strength and durability but also the indirect tensile strength compared to BF samples. According to the best results, samples containing 1% of nanosilica and 0.05% of basalt fiber improved the compressive strength, sorptivity, and water absorption by 37, 48, and 32%, respectively. Moreover, incorporation of 1% of nanosilica and 0.125% of basalt fiber increased the flexural strength, splitting tensile strength, and specific electrical resistivity by 29, 27, and 35%, respectively, compared to the control samples.

Author(s):  
Mohammadreza Kamali ◽  
Mahmoud Khalifeh ◽  
Arild Saasen ◽  
Laurent Delabroy

Abstract Integrated zonal isolation is well-known as a key parameter for safe drilling operation and well completion of oil and gas wells. An extensive research on alternative materials has been conducted in the past concerning primary cementing, overcoming annular leaks, and permanent well abandonment. The present article focuses on geopolymers, expansive cement, pozzolan based sealant and thermosetting resins. The viscous behavior and the pumpability of the different materials have been investigated and benchmarked with the properties of neat class G Portland cement. The current study includes short-term mechanical properties of the above-mentioned materials. These properties include compressive strength development, Young’s modulus, indirect tensile strength, and sonic strength. The tests are performed in accordance with API 10B-2 and ASTM D3967-16 for all the materials for 1, 3, 5, and 7-day of curing at 90°C and elevated (172 bar) and atmospheric pressures. Our results show a mixed behavior from the materials. According to uniaxial compressive test results, all the candidate barrier materials developed strength during the considered period; however, the geopolymer and pozzolanic-based mixture did not develop early strength. The expansive cement showed an acceptable early compressive strength, but strength reduction was noticed after some time. The strength reduction of expansive cement was also observed for the indirect tensile strength. All the materials become stiffer overtime as they made more strength. For the neat class G cement and expansive cement, the Young’s modulus showed a minimum after 5 days, but it was increased.


2013 ◽  
Vol 671-674 ◽  
pp. 1869-1872 ◽  
Author(s):  
Wen Min He ◽  
Shuan Fa Chen ◽  
Chuang Wang ◽  
Xue Gang Zhang ◽  
Rui Xiong

Basalt fiber (BF) has a lot of advantageous properties. The actual effectiveness of the fiber depends greatly on their dispersion degree in the composites. With the help of ultrasonic wave and a dispersant carboxymethyl cellulose (CMC), the even dispersion of short basalt fibers in water is realized. The fluidity of the basalt fiber cement mortar becomes less as the fiber content increasing. When the fluidity of mortar of BFRC is greater than 170mm, the even dispersion of short basalt fibers in BFRC can be realized. Fly ash can effectively improve the fluidity of BFRC and the density of cement matrix. When the amount of fly ash replaces the cement less than 25% by weight, it can improve both the compressive strength and tensile strength at age of 28 days.


2021 ◽  
Vol 233 ◽  
pp. 03005
Author(s):  
Xiangrui Feng ◽  
Zhenshu Li ◽  
Anjing Ma

In this experiment, the effects of polypropylene thick fiber (PPTF) with different volume admixtures (0, 0.05%, 0.10%, 0.15%, 0.20%, 0.25%) on the compressive strength, splitting tensile strength and bending strength of large admixture of slag fly ash concrete were investigated with short-cut basalt fiber (BF) as a reference. The results show that the polypropylene thick fiber can work well with basalt fiber and improve its strengthening effect of single admixture. And 0.10% of polypropylene thick fiber and 0.10% of basalt fibers by volume have the best strengthening effect on the mechanical properties of the large amount of slag fly ash concret.


2017 ◽  
Vol 16 (3) ◽  
pp. 053-063
Author(s):  
Jerzy Kukiełka

Cement matrices are known from concrete testing. Cement-asphalt matrices made of cement and asphalt emulsion are used in mineral-cement-emulsion mixes (MCEM). The matric strength in MCEM mixtures has not been studied so far. Cement-asphalt matrices with 0/1 mm rubber powder are proposed by the author for use in the MCEM [3, 26]. In this paper the results of the investigation of the mechanical properties of matrices are presented for comparative purposes and for the preliminary evaluation of their suitability for MCEM. The following tests were made: indirect tensile strength, bending strength, compressive strength and rigidity modules in NAT and 4 PB-PR.


2020 ◽  
Vol 14 (2) ◽  
pp. 6734-6742
Author(s):  
A. Syamsir ◽  
S. M. Mubin ◽  
N. M. Nor ◽  
V. Anggraini ◽  
S. Nagappan ◽  
...  

This study investigated the combine effect of 0.2 % drink cans and steel fibers with volume fractions of 0%, 0.5%, 1%, 1.5%, 2%, 2.5% and 3% to the mechanical properties and impact resistance of concrete. Hooked-end steel fiber with 30 mm and 0.75 mm length and diameter, respectively was selected for this study.  The drinks cans fiber were twisted manually in order to increase friction between fiber and concrete. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the strength performance of concrete, especially the compressive strength, flexural strength and indirect tensile strength. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the compressive strength, flexural strength and indirect tensile strength by 2.3, 7, and 2 times as compare to batch 1, respectively. Moreover, the impact resistance of fiber reinforced concrete has increase by 7 times as compared to non-fiber concretes. Moreover, the impact resistance of fiber reinforced concrete consistently gave better results as compared to non-fiber concretes. The fiber reinforced concrete turned more ductile as the dosage of fibers was increased and ductility started to decrease slightly after optimum fiber dosage was reached. It was found that concrete with combination of 2% steel and 0.2% drink cans fibers showed the highest compressive, split tensile, flexural as well as impact strength.    


2019 ◽  
Vol 9 (10) ◽  
pp. 2031 ◽  
Author(s):  
Hanbing Liu ◽  
Shiqi Liu ◽  
Shurong Wang ◽  
Xin Gao ◽  
Yafeng Gong

Basalt fibers are widely used in the modification of concrete materials due to its excellent mechanical properties and corrosion resistance. In this study, the basalt fibers were used to modify reactive powder concrete (RPC). The effect of four mix proportion parameters on the working and mechanical properties of basalt fiber reactive powder concrete (BFRPC) was evaluated by the response surface methodology (RSM). The fluidity, flexural and compressive strength were tested and evaluated. A statistically experimental model indicated that D (the silica fume to cement ratio) was the key of interactions between factors, affecting other factors and controlling properties of BFRPC. The increase in basalt fiber content had a remarkable effect on increasing the flexural and compressive strength when D = 0.2. The addition of basalt fiber obviously improved the mechanical properties of RPC. While when D = 0.4, the decrease of fiber content and the increase of quartz sand content could increase the compressive strength.


2018 ◽  
Vol 67 (4) ◽  
pp. 83-94
Author(s):  
Grzegorz Rogojsz ◽  
Damian Skupski ◽  
Bartosz Januszewski

This paper presents the results of laboratory tests on the properties of cement concrete containing various types of aggregate. The purpose of the tests was to determine the effect of aggregate on compressive strength, indirect tensile strength, air pore characteristics, frost resistance and the modulus of elasticity of concrete for road surfaces. The aggregate that meets the requirements for road concrete was determined on the basis of the tests. Keywords: road concrete, frost resistance of aggregate, frost resistance of road concrete.


2018 ◽  
Vol 12 (1) ◽  
pp. 441-457 ◽  
Author(s):  
Sahar Jabbar Alserai ◽  
Wissam Kadhim Alsaraj ◽  
Zina Waleed Abass

Introduction:One of Iraq’s major environmental problems is a large amount of residual iron produced by the industrial sector, which is stored in domestic waste and landfills. The reuse of construction waste gives two aims, the first is to remove large quantities of pollution resulted from these waste, the second provides cheap resources for concrete aggregates.Methods:This study conducted a series of experiments and tests to test the feasibility of reusing this iron slag and recycled concrete aggregate in concrete mixtures. Different percentages of iron filings were used in the concrete mixture at 0, 0.5%, 0.75% and 1%. Tests are done to evaluate the quality of cast iron concrete which include compressive strength (fcu), flexural strength (fr), indirect tensile strength (ft), SEM and modulus of elasticity (Ec) for four sustainable concretes.Results and Conclusion:The results show that the iron filings amount is increased to 1.0% which resulted in increasing percentage of compressive strength (fcu), flexural strength (fr), indirect tensile strength (ft), SEM and modulus of elasticity (Ec) with 10%, 32%, 42% and 11% for Geopolymer Concrete with Recycled Aggregate (GCRA), 9%, 52%,31% and 17% for geopolymer concrete with natural aggregate (GCNA), 10%, 19%,26% and 12% for Normal Concrete with Natural Aggregate (NCNA) and 23%, 19%, 67% and 14% for Normal Concrete with Recycled Aggregate (NCRA), respectively.


2018 ◽  
Vol 9 (1) ◽  
pp. 60 ◽  
Author(s):  
Wensheng Wang ◽  
Yongchun Cheng ◽  
Guirong Ma ◽  
Guojin Tan ◽  
Xun Sun ◽  
...  

The main distresses of asphalt pavements in seasonally frozen regions are due to the effects of water action, freeze-thaw cycles, and so on. Basalt fiber, as an eco-friendly mineral fiber with high mechanical performance, has been adopted to reinforce asphalt mixture in order to improve its mechanical properties. This study investigated the freeze-thaw damage characteristics of asphalt mixtures reinforced with eco-friendly basalt fiber by volume and mechanical properties—air voids, splitting tensile strength, and indirect tensile stiffness modulus tests. Test results indicated that asphalt mixtures reinforced with eco-friendly basalt fiber had better mechanical properties (i.e., splitting tensile strength and indirect tensile stiffness modulus) before and after freeze-thaw cycles. Furthermore, this study developed logistic damage models of asphalt mixtures in terms of the damage characteristics, and found that adding basalt fiber could significantly reduce the damage degree by about 25%, and slow down the damage grow rate by about 45% compared with control group without basalt fiber. Moreover, multi-variable grey models (GM) (1,N) were established for modelling the damage characteristics of asphalt mixtures under the effect of freeze-thaw cycles. GM (1,3) was proven as an effective prediction model to perform better in prediction accuracy compared to GM (1,2).


Sign in / Sign up

Export Citation Format

Share Document