scholarly journals Experimental Investigation of 900 Intake Flow Patterns with and without Submerged Vanes under Sediment Feeding Conditions

Author(s):  
Asli BOR

In this study, two experiments were conducted in a 90<sup>0</sup> water intake to study 3D flow patterns and sediment distribution using submerged vanes under sediment feeding and live-bed conditions. One column three vanes were installed at a 20<sup>0</sup> angle maintaining for a water discharge ratio of q<sub>r</sub> ~ 0.1. Three-dimensional mean and turbulent velocity components of flow in 90<sup>0</sup> channel intake were measured by Acoustic Doppler Velocimetry (ADV). Flow characteristics of the intake structure area with no vanes are compared with those condition. Results showed that three vanes with single column reduced the amount of sediment by 20% in the intake diversion. In the downstream corner of the intake, high velocities were measured where scouring occurred. The vanes affected the intensity of secondary flow, turbulence energy, flow separation, and moved sediment deposition downstream of the main channel.

1998 ◽  
Vol 25 (5) ◽  
pp. 956-966 ◽  
Author(s):  
H Chanson ◽  
L Toombes

Stepped waterways and cascades are common features of storm waterways, at dam outlets, and in water treatment plants. At an abrupt drop, open channel flows are characterized by the presence of shock waves and a substantial flow aeration. There is, however, little information on the basic flow characteristics. The study presents new experimental data obtained in a 0.5-m-wide stepped flume with an unventilated nappe. The investigations describe the three-dimensional flow patterns, including shock waves, standing waves, and spray, downstream of the nappe impact. The characteristics of the flow patterns are similar to those observed with abrupt expansion supercritical flows. Downstream of the drop brink, substantial aeration takes place along the nappe interfaces and the flow downstream of the impact is deaerated.Key words: abrupt drop, supercritical flow, shock waves, flow patterns, cascade.


2021 ◽  
Vol 2116 (1) ◽  
pp. 012072
Author(s):  
Jingzhi Zhang ◽  
Bengt Sunden ◽  
Vishwas Wadekar ◽  
Zan Wu

Abstract In order to investigate the characteristics of gas-liquid two-phase flows in horizontal mini circular tubes with inner diameters of 3.14 and 6.68 mm, a prism is adopted to improve the light path in the visualization experimental setup. The front and top views of air-water two-phase flow patterns in two tubes are captured synchronously based on the improved method. Three-dimensional gas-liquid interfaces, flow pattern maps, and void fraction are obtained. The experimental results show that tube diameters have significant effects on flow patterns transition lines in the flow pattern maps, but the void fractions are independent on channel sizes. The effect of gravity gradually decreases with decreasing tube diameter, while that of surface tension is enhanced. As a consequence, the proportion of annular flow in flow pattern map increases in mini tubes, while the reverse is true for the stratified flow whose proportion decreases dramatically in mini channels. The void fraction increases with increasing gas quality. Experimental void fractions obtained using the three-dimensional gas-liquid interfaces fit well with correlations in the open literature. The shape of PDF distributions varies with flow patterns, which could be used to identify flow patterns in industrial applications.


Author(s):  
Daogang Lu ◽  
Yuhao Zhang ◽  
Zhongyi Wang ◽  
Guanghao Wu ◽  
Qiong Cao

In AP1000 plant, the automatic depressurization system (ADS) works to discharge the high-temperature and high-pressure steam from the Reactor Coolant System (RCS) primary side to the In-containment Refueling Water Storage Tank (IRWST) in the LOCA conditions. In particular, for the AP1000 plant, both the IRWST and ADS spargers are specially designed, and the ADS spargers are located in one corner of the IRWST. All the factors lead to the special and complicated thermal and flow behavior in the IRWST, which in turn have great influences on the condensation effects of the ejected steam. In the present work, an overall scaled-down IRWST and ADS sparger models are built to study the condensation and mixing phenomena in the accidental depressurization events in AP1000. Thermocouples matrix with more than 200 T-type sheathed thermocouples are utilized to measure the three dimensional temperature in the large tank. The Particle Image Velocimetry (PIV) is employed for the measurement of the natural convection flow velocity. Based on the experimental data, the local spraying flow patterns, flow behavior, and thermal stratification phenomena in IRWST etc. are analyzed. The results indicate that the spraying steam condensation flow patterns are closely related to the subcooling degree in the IRWST. In addition, the stratification number is developed to evaluate the thermal stratification extent in the IRWST, which indicates that only part of the fluid are used efficiently for condensing the spraying steam directly.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2930
Author(s):  
Andrés Omar Tiseira Izaguirre ◽  
Roberto Navarro García ◽  
Lukas Benjamin Inhestern ◽  
Natalia Hervás Gómez

Over the past few decades, the aerodynamic improvements of turbocharger turbines contributed significantly to the overall efficiency augmentation and the advancements in downsizing of internal combustion engines. Due to the compact size of automotive turbochargers, the experimental measurement of the complex internal aerodynamics has been insufficiently studied. Hence, turbine designs mostly rely on the results of numerical simulations and the validation of zero-dimensional parameters as efficiency and reduced mass flow. To push the aerodynamic development even further, a precise validation of three-dimensional flow patterns predicted by applied computational fluid dynamics (CFD) methods is in need. This paper presents the design of an up-scaled volute-stator model, which allows optical experimental measurement techniques. In a preliminary step, numerical results indicate that the enlarged geometry will be representative of the flow patterns and characteristic non-dimensional numbers at defined flow sections of the real size turbine. Limitations due to rotor-stator interactions are highlighted. Measurement sections of interest for available measurement techniques are predefined.


Author(s):  
A. Khalatov ◽  
A. Byerley ◽  
D. Ochoa ◽  
Seong-Ki Min

A comprehensive experimental study has been performed in the U.S. Air Force Academy water tunnel to obtain a better understanding of the complicated flow patterns in shallow dimple configurations (h/D ≤ 0.1), including single cylindrical and spherical dimples, as well as single spanwise rows of dimples. The flow patterns, in-dimple separation zone extent, and bulk flow oscillation frequencies have been measured at low Reynolds number conditions. Three different single dimples and two single rows of dimples have been tested over a range of Reynolds numbers ReD of 3,170 to 23,590 including laminar and turbulent flow patterns downstream of a dimple. To visualize the fine flow features, five different colors of dye were injected through five cylindrical ports machined at locations upstream and inside the dimples. The measured results revealed unsteady and three-dimensional flow features inside and downstream of the dimple. The Reynolds number, dimple shape and the presence of adjacent dimples all play important roles in determining the nature of the flow pattern formation. Some preliminary conclusions regarding the laminar-turbulent flow transition after a dimple are presented.


2013 ◽  
Vol 744 ◽  
pp. 211-214
Author(s):  
Hong Meng Li ◽  
Guo Xiu Li ◽  
Yuan Jing Hou ◽  
Yu Song Yu

In this paper, the three-dimensional CFD method is used in numerical simulation of the highly intensified diesel engine intake process. The effect of different intake flow compound modes on the highly intensified diesel engine is studied (Including compounded port with helical and tangential intake port, compounded port with two helical intake ports and compounded port with two tangential intake ports). By contrasting the instantaneous flow field, flow characteristic and inlet ability of the three compound modes, the pattern of influence on the inlet flow characteristics by compound modes is analyzed. The results indicate that the combinations of the intake port greatly affect the swirl rate and the inlet ability. The interference of the two helical intake ports is serious, causing more inlet loss. The two helical intake ports have the weakest inlet ability among the three types of intake ports. However, two helical intake ports can cause higher swirl rate. Two tangential intake ports inlet ability is the most excellent, but its swirl rate is the lowest.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1718
Author(s):  
Hasan Zobeyer ◽  
Abul B. M. Baki ◽  
Saika Nowshin Nowrin

The flow hydrodynamics around a single cylinder differ significantly from the flow fields around two cylinders in a tandem or side-by-side arrangement. In this study, the experimental results on the mean and turbulence characteristics of flow generated by a pair of cylinders placed in tandem in an open-channel flume are presented. An acoustic Doppler velocimeter (ADV) was used to measure the instantaneous three-dimensional velocity components. This study investigated the effect of cylinder spacing at 3D, 6D, and 9D (center to center) distances on the mean and turbulent flow profiles and the distribution of near-bed shear stress behind the tandem cylinders in the plane of symmetry, where D is the cylinder diameter. The results revealed that the downstream cylinder influenced the flow development between cylinders (i.e., midstream) with 3D, 6D, and 9D spacing. However, the downstream cylinder controlled the flow recirculation length midstream for the 3D distance and showed zero interruption in the 6D and 9D distances. The peak of the turbulent metrics generally occurred near the end of the recirculation zone in all scenarios.


Author(s):  
Irsalan Arif ◽  
Hassan Iftikhar ◽  
Ali Javed

In this article design and optimization scheme of a three-dimensional bump surface for a supersonic aircraft is presented. A baseline bump and inlet duct with forward cowl lip is initially modeled in accordance with an existing bump configuration on a supersonic jet aircraft. Various design parameters for bump surface of diverterless supersonic inlet systems are identified, and design space is established using sensitivity analysis to identify the uncertainty associated with each design parameter by the one-factor-at-a-time approach. Subsequently, the designed configurations are selected by performing a three-level design of experiments using the Box–Behnken method and the numerical simulations. Surrogate modeling is carried out by the least square regression method to identify the fitness function, and optimization is performed using genetic algorithm based on pressure recovery as the objective function. The resultant optimized bump configuration demonstrates significant improvement in pressure recovery and flow characteristics as compared to baseline configuration at both supersonic and subsonic flow conditions and at design and off-design conditions. The proposed design and optimization methodology can be applied for optimizing the bump surface design of any diverterless supersonic inlet system for maximizing the intake performance.


Sign in / Sign up

Export Citation Format

Share Document