Recent evidence of Mexican temperate forest decline and the need for ex situ conservation, assisted migration, and translocation of species ensembles as adaptive management to face projected climatic change impacts in a megadiverse country

2020 ◽  
Vol 50 (9) ◽  
pp. 843-854 ◽  
Author(s):  
Cuauhtémoc Sáenz-Romero ◽  
Eduardo Mendoza-Maya ◽  
Erika Gómez-Pineda ◽  
Arnulfo Blanco-García ◽  
Angel R. Endara-Agramont ◽  
...  

Symptoms of forest decline, apparently due to climate change, have become evident in the last 10 years on the Trans-Mexican Volcanic Belt and northwestern temperate forest of Mexico, particularly at the xeric (low elevational) limit of several forest tree species. We review and provide recent evidence of massive infestation of timberline Pinus hartwegii Lindl. by the mistletoes Arceuthobium globosum Hawksw. & Wiens and Arceuthobium vaginatum (Humb. & Bonpl. ex Willd.) J.Presl; insufficient Abies religiosa (Kunth) Schltdl. & Cham. seedling recruitment at the Monarch Butterfly Biosphere Reserve; indications of inbreeding and defoliation in endangered Picea chihuahuana Martínez, Picea martinezii T.F. Patt., Picea mexicana Martínez, and extreme southern populations of Pseudotsuga menziesii (Mirb.) Franco; and the incidence of unusual pest and disease outbreaks (e.g., Dendroctonus Erichson, 1836 spp., Neodiprion autumnalis Smith, and Phytophthora cinnamomi Rands) in several conifer and oak species. We also discuss a difficult question: Is natural genetic variation sufficient to provide populations with the adaptive variation necessary to survive the natural selection imposed by projected climate change scenarios, or will phenotypic plasticity be exhausted and populations decline? Controversial ex situ conservation within natural protected areas, assisted migration, and translocation of species ensembles are discussed as options by which to accommodate projected climatic change impacts on the management and conservation practices of the megadiverse Mexican temperate forest.

AoB Plants ◽  
2020 ◽  
Vol 12 (2) ◽  
Author(s):  
Efthalia Stathi ◽  
Konstantinos Kougioumoutzis ◽  
Eleni M Abraham ◽  
Panayiotis Trigas ◽  
Ioannis Ganopoulos ◽  
...  

Abstract The Mediterranean hot spot includes numerous endemic and socio-economically important plant species seriously threatened by climate change and habitat loss. In this study, the genetic diversity of five populations of Cicer graecum, an endangered endemic species from northern Peloponnisos, Greece and a wild relative of the cultivated Cicer arietinum, was investigated using inter-simple sequence repeats (ISSRs) and amplified fragment length polymorphism (AFLP) markers in order to determine levels and structure of genetic variability. Nei’s gene diversity by ISSR and AFLP markers indicated medium to high genetic diversity at the population level. Moreover, AMOVA results suggest that most of the variation exists within (93 % for AFLPs and 65 % for ISSRs), rather than among populations. Furthermore, Principal Component Analysis based on ISSRs positively correlated the genetic differentiation among the populations to the geographic distances, suggesting that the gene flow among distant populations is limited. The ecological adaptation of C. graecum populations was also investigated by correlation of their genetic diversity with certain environmental variables. Aridity arose as the dominant factor positively affecting the genetic diversity of C. graecum populations. We modelled the realized climatic niche of C. graecum in an ensemble forecasting scheme under three different global circulation models and two climate change scenarios. In all cases, a severe range contraction for C. graecum is projected, highlighting the high extinction risk that is probably going to face during the coming decades. These results could be a valuable tool towards the implementation of an integrated in situ and ex situ conservation scheme approach for activating management programmes for this endemic and threatened species.


2021 ◽  
Author(s):  
Lingliang Guan ◽  
YuXia Yang ◽  
Pan Jiang ◽  
Qiuyu Mou ◽  
Yunsha Gou ◽  
...  

Abstract Blumea balsamifera is a famous Chinese Minority Medicine, which has a long history in Miao, Li, Zhuang and other minority areas. In recent years, due to the influence of natural and human factors, the distribution area of B. balsamifera resources has a decreasing trend. Therefore, it is very important to analyze the suitability of B. balsamifera in China. Following three climate change scenarios (SSP1-2.6, SSP2-4.5 and SSP5-8.5) under 2050s and 2070s, geographic information technology (GIS) and maximum entropy model (MaxEnt) were used to simulate the ecological suitability of B. balsamifera. The contents of L-borneol and total flavonoids of B. balsamifera in different populations were determined by gas chromatography (GC) and ultraviolet spectrophotometry (UV). The results showed that the key environmental variables affecting the distribution of B. balsamifera were mean temperature of coldest quarter (6.18-26.57 ℃), precipitation of driest quarter (22.46-169.7 mm), annual precipitation (518.36-1845.29 mm) and temperature seasonality (291.31-878.87). Under current climate situation, the highly suitable habitat was mainly located western Guangxi, southern Yunnan, most of Hainan, southwestern Guizhou, southwestern Guangdong, southeastern Fujian and western Taiwan, with a total area of 24.1×104 km2. The areas of the moderately and poorly suitable habitats were 27.57×104 km2 and 42.43×104 km2, respectively. Under the future climate change scenarios, the areas of the highly, moderately, and poorly suitable habitats of B. balsamifera showed a significant increasing trend, the geometric center of the total suitable habitats of B. balsamifera would move to the northeast. In recent years, the planting area of B. balsamifera has been reduced on a large scale in Guizhou, and its ex situ protection is imperative. By comparison, the content of L-borneol, total flavonoids and fresh leaf yield had no significant difference between Guizhou and Hainan (P > 0.05), which indicated that Hainan one of the best choice for ex-situ protection of B. balsamifera.


2012 ◽  
Vol 26 (2) ◽  
pp. 199-207 ◽  
Author(s):  
MELINDA L. MOIR ◽  
PETER A. VESK ◽  
KARL E. C. BRENNAN ◽  
ROBERT POULIN ◽  
LESLEY HUGHES ◽  
...  

2019 ◽  
Vol 6 (4) ◽  
pp. 182111 ◽  
Author(s):  
Lewis A. Jones ◽  
Philip D. Mannion ◽  
Alexander Farnsworth ◽  
Paul J. Valdes ◽  
Sarah-Jane Kelland ◽  
...  

Reef corals are currently undergoing climatically driven poleward range expansions, with some evidence for equatorial range retractions. Predicting their response to future climate scenarios is critical to their conservation, but ecological models are based only on short-term observations. The fossil record provides the only empirical evidence for the long-term response of organisms under perturbed climate states. The palaeontological record from the Last Interglacial (LIG; 125 000 years ago), a time of global warming, suggests that reef corals experienced poleward range shifts and an equatorial decline relative to their modern distribution. However, this record is spatio-temporally biased, and existing methods cannot account for data absence. Here, we use ecological niche modelling to estimate reef corals' realized niche and LIG distribution, based on modern and fossil occurrences. We then make inferences about modelled habitability under two future climate change scenarios (RCP4.5 and RCP8.5). Reef coral ranges during the LIG were comparable to the present, with no prominent equatorial decrease in habitability. Reef corals are likely to experience poleward range expansion and large equatorial declines under RCP4.5 and RCP8.5. However, this range expansion is probably optimistic in the face of anthropogenic climate change. Incorporation of fossil data in niche models improves forecasts of biodiversity responses under global climatic change.


Forests ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 996
Author(s):  
Lele Lin ◽  
Jian He ◽  
Lei Xie ◽  
Guofa Cui

White pines (Pinus subsect. Strobus) play important roles in forest ecosystems in the Northern Hemisphere. Species of this group are narrowly distributed or endangered in China. In this study, we used a species distribution model (SDM) to project and predict the distribution patterns of the 12 species of Chinese white pine under a variety of paleoclimatic and future climate change scenarios based on 39 high-resolution environmental variables and 1459 distribution records. We also computed the centroid shift, range expansion/contraction, and suitability change of the current distribution area to assess the potential risk to each species in the future. The modeling results revealed that the suitable habitat of each species is consistent with but slightly larger than its actual distribution range and that temperature, precipitation, and UV radiation are important determining factors for the distribution of different white pine species. The results indicate that the Last Glacial Maximum (LGM) greatly affected the current distribution of the Chinese white pine species. Additionally, it was predicted that under the future climate change scenarios, there will be a reduction in the area of habitats suitable for P. armandii, P. morrisonicola, and P. mastersiana. Furthermore, some of the current distribution sites of P. armandii, P. kwangtungensis, P. mastersiana, P. morrisonicola, P. sibirica, and P. wallichiana were predicted to become more unsuitable under these scenarios. These results indicate that some Chinese white pine species, such as P. armandii, P. morrisonicola, and P. mastersiana, may have a very high risk of population shrinkage in the future. Overall, this study provided relevant data for the long-term conservation (both in situ and ex situ) and sustainable management of Chinese white pine species.


2021 ◽  
Vol 13 (2) ◽  
pp. 462
Author(s):  
Muhammad Hadi Saputra ◽  
Han Soo Lee

This study aims to assess the impact of climate change on the distribution of Styrax sumatrana in North Sumatra by applying the maximum entropy (MaxEnt) model with biophysical factors (elevation, slope, aspect, and soil), climatic factors (19 bioclimate data sets for 2050 and 2070), and anthropogenic factors (land use land cover (LULC) changes in 2050 and 2070). The future climate data retrieved and used are the output of four climate models from Coupled Model Intercomparison Project Phase 5 (CMIP5), namely, the CCSM4, CNRM-CM5, MIROC5, and MRI-CGCM3 models, under the Representative Concentration Pathways (RCPs) 4.5 and 8.5 scenarios. The MaxEnt modelling results showed the importance of the mean temperature of the coldest quarter and the LULC variables. Styrax sumatrana rely on environmental conditions with air temperatures ranging from 13 to 19 °C. The potentially suitable land types for Styrax sumatrana are shrubs, gardens, and forests. The future predictions show that the suitable habitat for Styrax sumatrana is predicted to decrease to 3.87% in 2050 and to 3.54% in 2070 under the RCP4.5 scenario. Under the RCP8.5 scenario, the suitable area is predicted to decrease to 3.04% in 2050 and to 1.36% in 2070, respectively. The degradation of the suitable area is mainly due to increasing temperature and deforestation in future predictions. The modelling results illustrate that the suitable habitats of Styrax sumatrana are likely to be reduced under future climate change scenarios or lost in 2070 under the RCP8.5 scenario. The potential future extinction of this species should alert authorities to formulate conservation strategies. Results also demonstrated key variables that should be used for formulating ex situ conservation strategies.


2020 ◽  
Author(s):  
Konstantinos Kougioumoutzis ◽  
Ioannis P. Kokkoris ◽  
Maria Panitsa ◽  
Panayiotis Trigas ◽  
Arne Strid ◽  
...  

AbstractIn the Anthropocene era, climate change poses a great challenge in environmental management and decision-making for species and habitat conservation. To support decision-making, many studies exist regarding the expected vegetation changes and the impacts of climate change on European plants, yet none has investigated how climate change will affect the extinction risk of the entire endemic flora of an island biodiversity hotspot, with intense human disturbance. Our aim is to assess, in an integrated manner, the impact of climate change on the biodiversity and biogeographical patterns of Crete and to provide a case-study upon which a cost-effective and climate-smart conservation planning strategy might be set. We employed a variety of macroecological analyses and estimated the current and future biodiversity, conservation and extinction hotspots in Crete, as well as the factors that may have shaped these distribution patterns. We also evaluated the effectiveness of climate refugia and the NATURA 2000 network (PAs) on protecting the most vulnerable species and identified the taxa that should be of conservation priority based on the Evolutionary Distinct and Globally Endangered (EDGE) index, during any environmental management process. The highlands of Cretan mountain massifs have served as both diversity cradles and museums, due to their stable climate and high topographical heterogeneity. They are also identified as biodiversity hotspots, as well as areas of high conservation and evolutionary value, due their high EDGE scores. Due to the ‘escalator to extinction’ phenomenon and the subsequent biotic homogenization, these areas are projected to become diversity ‘death-zones’ in the near future and should thus be prioritized in terms of conservation efforts and by decision makers. In-situ conservation focusing at micro-reserves and ex-situ conservation practices should be considered as an insurance policy against such biodiversity losses, which constitute cost-effective conservation measures. Scientists and authorities should aim the conservation effort at areas with overlaps among PAs and climate refugia, characterized by high diversity and EDGE scores. These areas may constitute Anthropocene refugia. Thus, this climate-smart, cost-effective conservation-prioritization planning will allow the preservation of evolutionary heritage, trait diversity and future services for human well-being and acts as a pilot for similar regions worldwide.


2019 ◽  
Vol 10 (1) ◽  
pp. 53-63
Author(s):  
Muhidin Šeho ◽  
Sezgin Ayan ◽  
Gerhard Huber ◽  
Gülzade Kahveci

Background and Purpose: Turkish hazel (Corylus colurna L.) has been overused because of its valuable wood. Recently, Turkish hazel has been found only in small isolated populations, and very small populations within its natural distribution area, so it has been protected under IUCN with the status "Least Concern (LC)". Therefore, the remaining Turkish hazel populations have a critical importance. Genetic conservation of this tree species plays a key role in sustainable forest development. There have been only a few studies of single populations, but an overview including all countries is still missing. The aim of this publication is to give an overview of ecological and economic importance of Turkish hazel, which is considered as a tolerant tree species to climate change, for dry and warm conditions in Central Europe. Materials and Methods: This review paper has been prepared based on the existing literature such as reports, theses, project documents and publications related to Turkish hazel. This paper applies a literature review of the concepts of: i) Distribution and threats of Turkish hazel, ii) Ecological and economic importance, iii) Regeneration, soil demand and shading tolerance, iv) Seed, seedling, plant production and planting, v) Competitiveness in forest communities, vi) Invasiveness and hybridization, and vii) Future stand mixtures. Results and Conclusions: This review paper should interest forest practitioners and scientists in all countries who work with this important and valuable tree species under climate change. At first, an inventory of all populations in each country is needed. For this purpose, research should focus on the cultivation of convenient provenances of Turkish hazel under climate change. Next, genetic differences should be determined in the laboratory using genetic markers. After the assessment of the phenotype and genotype of different provenances, it would be possible to recommend provenance for each ecological condition and assisted migration (AM). Main recommendations for each country are used for selecting and establishing gene conservation units (in-situ and ex-situ) and seed orchards that will ensure the survival of Turkish hazel, and for building the base for cultivation in the future. In addition, the results might be a basis for future provenance tests, plantations and possibilities of assisted migration attempts.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6731 ◽  
Author(s):  
Lili Tang ◽  
Runxi Wang ◽  
Kate S. He ◽  
Cong Shi ◽  
Tong Yang ◽  
...  

Background As global climate change accelerates, ecologists and conservationists are increasingly investigating changes in biodiversity and predicting species distribution based on species observed at sites, but rarely consider those plant species that could potentially inhabit but are absent from these areas (i.e., the dark diversity and its distribution). Here, we estimated the dark diversity of vascular plants in China and picked up threatened dark species from the result, and applied maximum entropy (MaxEnt) model to project current and future distributions of those dark species in their potential regions (those regions that have these dark species). Methods We used the Beals probability index to estimate dark diversity in China based on available species distribution information and explored which environmental variables had significant impacts on dark diversity by incorporating bioclimatic data into the random forest (RF) model. We collected occurrence data of threatened dark species (Eucommia ulmoides, Liriodendron chinense, Phoebe bournei, Fagus longipetiolata, Amentotaxus argotaenia, and Cathaya argyrophylla) and related bioclimatic information that can be used to predict their distributions. In addition, we used MaxEnt modeling to project their distributions in suitable areas under future (2050 and 2070) climate change scenarios. Results We found that every study region’s dark diversity was lower than its observed species richness. In these areas, their numbers of dark species are ranging from 0 to 215, with a generally increasing trend from western regions to the east. RF results showed that temperature variables had a more significant effect on dark diversity than those associated with precipitation. The results of MaxEnt modeling showed that most threatened dark species were climatically suitable in their potential regions from current to 2070. Discussions The results of this study provide the first ever dark diversity patterns concentrated in China, even though it was estimated at the provincial scale. A combination of dark diversity and MaxEnt modeling is an effective way to shed light on the species that make up the dark diversity, such as projecting the distribution of specific dark species under global climate change. Besides, the combination of dark diversity and species distribution models (SDMs) may also be of value for ex situ conservation, ecological restoration, and species invasion prevention in the future.


Sign in / Sign up

Export Citation Format

Share Document