scholarly journals The economics of forest bioeconomy: new results

Author(s):  
Jenni Miettinen ◽  
Markku Ollikainen

We examine the emerging forest bioeconomy as an integrated multi-product industrial ecosystem, where the traditional pulp mills allocate the use of side streams to independent biochemical companies manufacturing bioproducts in the vicinity of the pulp mills. Biochemical companies benefit from the proximity by receiving wood-based side streams at lower costs and pulp mills from having a new source of revenue from selling side streams. We focus on the economic interaction between the pulp mill and the biochemical company, and study the impacts on the use of wood and profits under perfect and imperfect competition. We demonstrate that the new industrial ecosystem uses more wood than traditional pulp mills, but, depending on the side stream, it may promote cascading use of wood-based side streams.

TAPPI Journal ◽  
2020 ◽  
Vol 19 (3) ◽  
pp. 139-148
Author(s):  
MARYAM SADEGH MOUSAVI ◽  
NIKOLAI DEMARTINI

The accumulation of nonprocess elements in the recovery cycle is a common problem for kraft pulp mills trying to reduce their water closure or to utilize biofuels in their lime kiln. Nonprocess elements such as magne-sium (Mg), manganese (Mn), silicon (Si), aluminum (Al), and phosphorus (P) enter the recovery cycle via wood, make-up chemicals, lime rock, biofuels, and process water. The main purge point for these elements is green liquor dregs and lime mud. If not purged, these elements can cause operational problems for the mill. Phosphorus reacts with calcium oxide (CaO) in the lime during slaking; as a result, part of the lime is unavailable for slaking reactions. The first part of this project, through laboratory work, identified rhenanite (NaCa(PO4)) as the form of P in the lime cycle and showed the negative effect of P on the availability of the lime. The second part of this project involved field studies and performing a mass balance for P at a Canadian kraft pulp mill.


2004 ◽  
Vol 50 (3) ◽  
pp. 183-194 ◽  
Author(s):  
S.C. Stratton ◽  
P.L. Gleadow ◽  
A.P. Johnson

The impact of effluent discharges continues to be an important issue for the pulp manufacturing industry. Considerable progress has been made in pollution prevention to minimize waste generation, so-called manufacturing “process closure.” Since the mid-1980s many important technologies have been developed and implemented, many of these in response to organochlorine concerns. Zero effluent operation is now a reality for a few bleached chemi-thermomechanical pulp (BCTMP) pulp mills. In kraft pulp manufacturing, important developments include widespread adoption of new cooking techniques, oxygen delignification, closed screening, improved process control, new bleaching methods, and systems that minimize pulping liquor losses. Coupled to this is a commitment to reduce water use and maximize reuse of in-mill process streams. Some companies pursued bleach plant closure, and many have been successful in eliminating a portion of their bleaching wastewaters. However, the difficulties inherent in closing bleach plants are considerable. For many mills the optimal solution has been found to be a high degree of closure coupled with external biological treatment of the remaining process effluent. No bleach plants at papergrade bleached kraft mills are known to be operating effluent-free on a continuous basis. This paper reviews the important worldwide technological developments and mill experiences in the 1990s that were focused on minimizing environmental impacts of pulp manufacturing operations.


Holzforschung ◽  
2019 ◽  
Vol 73 (6) ◽  
pp. 589-597 ◽  
Author(s):  
José A.F. Gamelas ◽  
Sofia M. Rebola ◽  
Margarita G. Evtyugina ◽  
Valdemar I. Esteves ◽  
Dmitry V. Evtuguin

Abstract In order to close the water cycle in pulp mills with condensates instead of fresh water, the malodorous/hazardous volatile compounds and colored substances have to be removed by appropriate efficient methods. In the present work, the condensate from the evaporation of black liquor (BL) from a kraft mill was purified by a batch adsorptive process by means of commercial activated carbon (AC). The effluent was found to contain a wide range of aromatic and organosulfur volatile compounds, including toluene, ethylguaicol, syringaldehyde, dimethyl disulfide (DMDS), dimethyl trisulfide (DMTS), 2,3-dimethylthiophene, benzothiol and benzothiophene derivatives. Methanol was the major volatile organic component in the condensate (201 mg l−1), which was, however, poorly adsorbed on the AC surface. Aromatics and organosulfur contaminants were adsorbed almost completely in 2–5 min at 23°C under the optimized AC load (900 mg l−1). The treatment allowed the elimination of up to 99% of the obnoxious odor, color and turbidity of the condensate. The adsorption equilibrium followed the Langmuir model and the pseudo-second-order kinetics. The new process could be incorporated in the pulp mill with relatively low additional reagent costs.


2021 ◽  
Vol 9 ◽  
Author(s):  
Brita Asikanius ◽  
Anna-Stiina Jääskeläinen ◽  
Hanna Koivula ◽  
Petri Oinonen ◽  
Monika Österberg

Valorization of side streams offers novel types of raw materials to complement or replace synthetic and food-based alternatives in materials science, increasing profitability and decreasing the environmental impacts of biorefineries. Lignocellulose biomass contains lignin and carbohydrates that are covalently linked into lignin-carbohydrate complexes (LCCs). In biomass fractionation processes, these complexes are conventionally considered as waste, which hinders the biomass fractionation process, and they may solubilize into aqueous effluents. This study presents how LCCs, derived from pulp mill effluent, can be turned into valuable biopolymers for industrial polymer film applications. Free-standing composite films containing hydroxyethyl cellulose (HEC) and LCCs with varying molar mass, charge density and lignin/hemicellulose ratio were prepared to study the effect of LCC amount on mechanical properties and oxygen permeability. Increasing the LCC content increased the yield point and Young’s modulus of the films. Breaking strain measurements revealed a non-linear correlation with the LCC concentration for the samples with higher lignin than hemicellulose content. The addition of LCC enhanced oxygen barrier properties of HEC films significantly even at high relative humidity. The present research demonstrates how a currently underutilized fraction of the biorefinery side stream has the potential to be valorized as a biopolymer in industrial applications, for example as a barrier film for paper and board packaging.


2019 ◽  
Vol 34 (1) ◽  
pp. 19-27
Author(s):  
Kimona Häggström ◽  
Magnus Gunnarsson ◽  
Katarina Bremert-Jirholm ◽  
Nina Simic

Abstract Chlorine dioxide is commonly used as a bleaching agent in kraft pulp mills. Scrubbers are required to remove any remaining ClO2 from the plant tail gases. To control the air emissions of chlorine compounds, chlorine dioxide and chlorine contents must be monitored to ensure that the strict regulatory standards are met. However, the currently used analytical method is not suitable for detection of low concentrations of chlorine and chlorine dioxide. A new method for measuring chlorine dioxide and chlorine emissions was developed, which ensures compliance with the stringent requirements imposed by the authorities. The two species could be measured separately with a limit of quantification of 3 ppm. The method was robust and easy to use in the pulp mill environment and it was validated both in the laboratory and the field. The specificity of the method was demonstrated, Cl2 analysis was not sensitive to the presence of ClO2 and vice versa. The uncertainty (±2×RSD) of the analytical method in the field was estimated from duplicate measurements performed in the range of 3–500 ppm for ClO2 and 3–300 ppm for Cl2, and was found to be ±20 % and ±10 %, respectively. Possible interferences in the analytical method are also discussed.


2014 ◽  
Vol 71 (5) ◽  
pp. 747-755 ◽  
Author(s):  
T.J. Arciszewski ◽  
A.J. Farwell ◽  
M.R. Servos ◽  
T.D. Jardine ◽  
K.R. Munkittrick

Techniques to document recovery after the closure of pulp mills that discharge enriching effluents are not well established, but δ13C may be a useful tool. In the 1990s, the muscle tissue of white sucker (Catostomus commersonii) collected downstream of two pulp and paper mills discharging into separate streams (Mattagami and Kapuskasing rivers) was enriched in 13C compared with upstream fish, suggesting uptake of pulp-derived C. The Mattagami River mill was closed in 2006, and analysis of muscle and gonad for δ13C was performed in 2011. As expected, fish captured in 2011 downstream of the operational Kapuskasing mill still showed the influence of the pulp-derived C in muscle and gonad tissue. After the closure of the Mattagami River mill, muscle tissue of white sucker was still enriched in 13C compared with upstream fish, while gonad tissue was not. The patterns observed in the Mattagami River were, however, related to age; the oldest fish showed enrichment of δ13C in both muscle and gonad tissue, suggesting the residual occurrence of pulp-derived C. This study suggests that measurements of stable isotopes in fish across a broad age range may indicate ecosystem improvements. These techniques may also be useful where no data prior to the upgrade or closure are available for comparison.


1981 ◽  
Vol 38 (7) ◽  
pp. 739-743 ◽  
Author(s):  
A. B. McKague

Constituents responsible for the toxicity of a sample of bleached kraft chlorination-stage effluent to juvenile rainbow trout (Salmo gairdneri) were investigated. Tetrachlorocatechol, 3,4,5-trichlorocatechol, and 2,6-dichlorohydroquinone were identified and evidence was obtained for the presence of other chlorodihydroxybenzenes in toxic acidic fractions of the sample. Concentrations of 0.46 mg/L 3,4,5-trichloro- and 0.74 mg/L tetrachloro-catechol were estimated in the sample by analytical gas chromatography. Toxic materials in the nonacidic fraction were not identified although the nontoxic dichloromethyl methyl sulfone was isolated.Key words: chlorination-stage effluent, toxicity, pulp mill, chlorocatechols, chlorodihydroxybenzenes


2016 ◽  
Vol 6 (1) ◽  
pp. 768-772
Author(s):  
Nei Pereira Junior ◽  
Anelize de Oliveira Moraes ◽  
Luiz Felipe Modesto ◽  
Ninoska Isabel Bojorge Ramirez

This study aimed at evaluating the potential of pulp mill residue (PMR) as a feedstock for ethanol production. The simultaneous saccharification and fermentation (SSF) process was operated using 8 gL -1 of a commercial strain of Saccharomyces cerevisiae JP1 under optimal proportions of cellulase cocktail (24.8 FPU/g cellulose of Cellic® CTec2) and cellulosic residue (200 gL -1 ). After 48 hours of pre-hydrolysis at 50ºC and 200 rpm, the fermentation was carried out at 37 ºC, generating 48.5 gL -1 of ethanol in 10 hours and reaching a conversion efficiency of 53.3% from cellulose to ethanol and a volumetric productivity of 4.8 gL -1 h -1 that is within the range of values of first generation ethanol production (5-8 gL -1 h -1 ). These results showed that the pulp mill residue is an interesting and effective feedstock for the production of ethanol, which can be used for fuel purposes in the own pulp mills.  


TAPPI Journal ◽  
2014 ◽  
Vol 13 (6) ◽  
pp. 9-15 ◽  
Author(s):  
TROY RUNGE ◽  
JACKIE HEINRICHER ◽  
DAN MEIER

Bamboo is one of the world’s fastest growing feedstocks and represents a promising nonwood resource that can be utilized in the pulp and paper industry. The timber varieties offer low feedstock costs, can be processed similarly to trees from a logistics standpoint, and have useful fiber properties for papermaking. Plantations have not yet been established due to propagation costs, limiting adoption of bamboo as a pulp feedstock to smaller pulp mills primarily in China, where there are native forests. Recent advances in micropropagation may allow lower establishment costs, but gradual introduction into the supply chain will be required. One concept is to gradually include bamboo feedstock into an established pulp mill as plantations are established, using co-cooking with a wood species. Previous work has shown that bamboo cooks fairly easily using the kraft process with conditions similar to hardwood species.


Sign in / Sign up

Export Citation Format

Share Document