Slow pyrolysis pine wood-derived biochar reduces nitrous oxide production from surface but not subsurface soil

Author(s):  
Hongyuan Deng ◽  
Leanne Ejack ◽  
Shamim Gul ◽  
Shiv Prasher ◽  
Joann K. Whalen

Soil amended with biochar is expected to produce less nitrous oxide (N2O), although this may depend on nitrate (NO3-N) availability. Our objective was to determine how pine wood biochar, slow pyrolyzed at 500°C, affects N2O production in soil having different denitrification potentials with variable NO3-N concentrations under controlled laboratory conditions. Sandy loam surface soils (0–30 cm, pH 5.7) and sandy clay loam subsurface soils (40–60 cm, pH 5.6) were amended with four biochar rates (0, 10, 20, and 30 g kg-1), two nitrogen fertilizer rates (0 and 100 mg kg-1 NO3-N) and two acetylene levels (0 and 10% headspace), arranged as a full factorial. Soil moisture content was adjusted to 80% water-filled pore space and flasks were incubated at 20°C for 30 h. Headspace gas was collected from each flask at 25, 26, 28 and 30 h. There was a significant reduction in N2O production with increasing rate of biochar in the surface soil but not in the subsurface soil. On average, less N2O was produced in the subsurface soil than the surface soil. As the NO3-N concentration was not a limiting factor for denitrification, the most likely explanation was that denitrifier activity was influenced by the availability of soluble organic carbon in the soil-biochar mixtures. We recommend further study of the coupled carbon-nitrogen transformations during denitrification to understand how biochar influences soil N2O production in sandy loam soils.

2018 ◽  
Author(s):  
Yujin Zhang ◽  
Minna Ma ◽  
Huajun Fang ◽  
Dahe Qin ◽  
Shulan Cheng ◽  
...  

Abstract. The contributions of long-lived nitrous oxide (N2O) to the global climate and environment have received increasing attention. Especially, atmospheric nitrogen (N) deposition has substantially increased in recent decades due to extensive use of fossil fuels in industry, which strongly stimulates the N2O emissions of the terrestrial ecosystem. Several models have been developed to simulate N2O emission, but there are still large differences in their N2O emission simulations and responses to atmospheric deposition over global or regional scales. Using observations from N addition experiments in a subtropical forest, this study compared six widely-used N2O models (i.e. DayCENT, DLEM, DNDC, DyN, NOE, and NGAS) to investigate their performances for reproducing N2O emission, and especially the impacts of two types of N additions (i.e. ammonium and nitrate: NH4+ and NO3−, respectively) and two levels (low and high) on N2O emission. In general, the six models reproduced the seasonal variations of N2O emission, but failed to reproduce relatively larger N2O emissions due to NH4+ compared to NO3− additions. Few models indicated larger N2O emission under high N addition levels for both NH4+ and NO3−. Moreover, there were substantial model differences for simulating the ratios of N2O emission from nitrification and denitrification processes due to disagreements in model structures and algorithms. This analysis highlights the need to improve representation of N2O production and diffusion, and the control of soil water-filled pore space on these processes in order to simulate the impacts of N deposition on N2O emission.


1997 ◽  
Vol 77 (2) ◽  
pp. 145-152 ◽  
Author(s):  
A. F. MacKenzie ◽  
M. X. Fan ◽  
F. Cadrin

Nitrous oxide (N2O) produced from agricultural activities represents a threat to the ozone layer and economic losses. Rates and magnitudes of N2O emissions of cropping systems must be determined to establish corrective management procedures. In 1994, N2O emissions were determined with corn (ZeaMays L.) and corn-legume rotations. Continuous corn was studied on four soils, two from a long-term experiment, a Ste. Rosalie heavy clay (Humic Gleysol) and a Chicot sandy loam (Grey-Brown Podzol), at 0, 170, 285 or 400 kg N ha−1, and two from a corn rotation study, a Ste. Rosalie clay (Humic Gleysol) and an Ormstown silty clay loam (Humic Gleysol). Treatments included no-till (NT) and conventional tillage (CT), monoculture corn (CCCC), monoculture soybean; corn-soybean; and soybean-corn-alfalfa phased rotations. Nitrogen rates of 0, 90, or 180 kg N ha−1 for corn and 0, 20, or 40 kg N ha−1 for continuous soybean were used, and soybean/alfalfa following corn no fertilizer N. Rates of N2O emission were measured from closed chambers through the growing season. About 0.99 to 2.1% of N added was lost as N2O. Nitrous oxide emission increased with increased soil water content, NO3 concentration and fertilizer N rates. Emission of N2O was higher with NT than with CT, and with corn than with soybean or alfalfa. A corn system using CT, legumes in rotation and moderate fertilizer N would reduce N2O emission. Key words: Greenhouse gases, soil nitrate, tillage methods, water-filled pore space, denitrification, rotations


2019 ◽  
Vol 8 (1) ◽  
pp. 20
Author(s):  
Nwankwoala H. O. ◽  
Omemu S. O.

This study evaluated the physico-chemical properties of the soil and water in Elebele Community in Ogbia Local Government Area of Bayelsa State, Nigeria. Standard sampling and analytical methods were employed. The predominant soils of the region are mainly sandy-loam and clayey-loamy. The soil physico-chemical properties were in good status as they were not toxic. Soil particle size distribution (sand silt and clay) was observed as follows: sand content ranged between 50.6%-86.2% with a mean of 64.5% at the surface soil while the subsurface soil ranged between 35%-80.2% with a mean of 60.2%. Silt on the other hand ranged between 7.8%-36% and a mean of 25.1% at the surface and ranged between 12.8-49.6% and mean of 25.4% at the subsurface while clay ranged between 3.4%-16% and mean of 9.4% at the surface and also ranged between 7%-16% and mean value of the soil. However, the soil physical properties were relativity good for sustainability. Also, the metals studied were detected in all the sites. Generally the concentrations of the metals were highest at the top soils. This is expected since the top soil is the point of contact. The metal levels in all the sites were significantly higher than the levels observed in the control sites. Sources of heavy metals in soils like inorganic fertilizers and pesticides need to be controlled.


Author(s):  
Sisi Lin ◽  
Guillermo Hernandez-Ramirez

Applying abundant manure to soils can accelerate nitrogen transformations and nitrous oxide (N2O) emissions. We conducted a laboratory incubation to examine the turnover of labile N in manured soils. Soils were collected from agricultural fields that had recently received spring-injected liquid manure with or without admixing nitrification inhibitors. Bands and interbands of the manure plots were incubated separately. Time courses of ammonium (NH4+) and nitrate (NO3-) were used to derive and contrast zero-, first- and second-order kinetics models. We found that nitrification rates were consistently better represented by first-order kinetics (k1). Furthermore, across all evaluated soils, the dependency of nitrification rate (k1 of NH4+) on initial NH4+ concentration was modelled by Michaelis-Menten kinetics reasonably well, with an affinity (Km) of 63 mg N kg-1 soil (R2= 0.82). Compared to the manure interbands, the initially NH4-enriched bands had a much faster nitrification rate, with half-life for NH4+ of only 4 days and rapid k1 (0.186 versus 0.011 day-1). Soil N substrate and k1 exerted control on N2O production. Nitrous oxide production increased linearly with both measured NH4+ intensity (R2= 0.47) and modelled k1–NH4+ (R2= 0.48). Conversely, N2O production increased non-linearly with NO3- intensity (R2= 0.68), where high NO3- caused a saturation plateau with a threshold of 96 mg N kg-1 day-1 – beyond which no additional N2O was produced. During peak N transformations, measured N2O-N flux was 1.4±0.3% of the inorganic N undergoing nitrification. Heavily manured soils exhibited augmented N turnover that increased N2O fluxes, but inhibitors reduced these emissions by half.


Agronomie ◽  
2002 ◽  
Vol 22 (7-8) ◽  
pp. 731-738 ◽  
Author(s):  
Roland Harrison ◽  
Sharon Ellis ◽  
Roy Cross ◽  
James Harrison Hodgson

2021 ◽  
Author(s):  
Arezoo Taghizadeh-Toosi ◽  
Baldur Janz ◽  
Rodrigo Labouriau ◽  
Jørgen E. Olesen ◽  
Klaus Butterbach-Bahl ◽  
...  

2021 ◽  
Vol 13 (3) ◽  
pp. 1398
Author(s):  
Tavjot Kaur ◽  
Simerpreet Kaur Sehgal ◽  
Satnam Singh ◽  
Sandeep Sharma ◽  
Salwinder Singh Dhaliwal ◽  
...  

The present study was conducted to investigate the seasonal effects of five land use systems (LUSs), i.e., wheat–rice (Triticum aestivum—Oryza sativa) system, sugarcane (Saccharum officinarum), orange (Citrus sinensis) orchard, safeda (Eucalyptus globules) forest, and grassland, on soil quality and nutrient status in the lower Satluj basin of the Shiwalik foothills Himalaya, India. Samples were analyzed for assessment of physico-chemical properties at four soil depths, viz., 0–15, 15–30, 30–45, and 45–60 cm. A total of 120 soil samples were collected in both the seasons. Soil texture was found to be sandy loam and slightly alkaline in nature. The relative trend of soil organic carbon (SOC), macro- and micro-nutrient content for the five LUSs was forest > orchard > grassland > wheat–rice > sugarcane, in the pre- and post-monsoon seasons. SOC was highly correlated with macronutrients and micronutrients, whereas SOC was negatively correlated with soil pH (r = −0.818). The surface soil layer (0–15 cm) had a significantly higher content of SOC, and macro- and micro-nutrients compared to the sub-surface soil layers, due to the presence of more organic content in the soil surface layer. Tukey’s multiple comparison test was applied to assess significant difference (p < 0.05) among the five LUSs at four soil depths in both the seasons. Principle component analysis (PCA) identified that SOC and electrical conductivity (EC) were the most contributing soil indicators among the different land use systems, and that the post-monsoon season had better soil quality compared to the pre-monsoon season. These indicators helped in the assessment of soil health and fertility, and to monitor degraded agroecosystems for future soil conservation.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 849
Author(s):  
Begoña de la Fuente ◽  
Santiago Saura

The invasive pine wood nematode (PWN), Bursaphelenchus xylophilus, causal agent of pine wilt disease, was first reported in Europe, near Lisbon, in 1999, and has since then spread to most of Portugal. We here modelled the spatiotemporal patterns of future PNW natural spread in the Iberian Peninsula, as dispersed by the vector beetle Monochamus galloprovincialis, using a process-based and previously validated network model. We improved the accuracy, informative content, forecasted period and spatial drivers considered in previous modelling efforts for the PWN in Southern Europe. We considered the distribution and different susceptibility to the PWN of individual pine tree species and the effect of climate change projections on environmental suitability for PWN spread, as we modelled the PWN expansion dynamics over the long term (>100 years). We found that, in the absence of effective containment measures, the PWN will spread naturally to the entire Iberian Peninsula, including the Pyrenees, where it would find a gateway for spread into France. The PWN spread will be relatively gradual, with an average rate of 0.83% of the total current Iberian pine forest area infected yearly. Climate was not found to be an important limiting factor for long-term PWN spread, because (i) there is ample availability of alternative pathways for PWN dispersal through areas that are already suitable for the PWN in the current climatic conditions; and (ii) future temperatures will make most of the Iberian Peninsula suitable for the PWN before the end of this century. Unlike climate, the susceptibility of different pine tree species to the PWN was a strong determinant of PWN expansion through Spain. This finding highlights the importance of accounting for individual tree species data and of additional research on species-specific susceptibility for more accurate modelling of PWN spread and guidance of related containment efforts.


2018 ◽  
Vol 15 (20) ◽  
pp. 6127-6138 ◽  
Author(s):  
Qixing Ji ◽  
Claudia Frey ◽  
Xin Sun ◽  
Melanie Jackson ◽  
Yea-Shine Lee ◽  
...  

Abstract. Nitrous oxide (N2O) is a greenhouse gas and an ozone depletion agent. Estuaries that are subject to seasonal anoxia are generally regarded as N2O sources. However, insufficient understanding of the environmental controls on N2O production results in large uncertainty about the estuarine contribution to the global N2O budget. Incubation experiments with nitrogen stable isotope tracer were used to investigate the geochemical factors controlling N2O production from denitrification in the Chesapeake Bay, the largest estuary in North America. The highest potential rates of water column N2O production via denitrification (7.5±1.2 nmol-N L−1 h−1) were detected during summer anoxia, during which oxidized nitrogen species (nitrate and nitrite) were absent from the water column. At the top of the anoxic layer, N2O production from denitrification was stimulated by addition of nitrate and nitrite. The relative contribution of nitrate and nitrite to N2O production was positively correlated with the ratio of nitrate to nitrite concentrations. Increased oxygen availability, up to 7 µmol L−1 oxygen, inhibited both N2O production and the reduction of nitrate to nitrite. In spring, high oxygen and low abundance of denitrifying microbes resulted in undetectable N2O production from denitrification. Thus, decreasing the nitrogen input into the Chesapeake Bay has two potential impacts on the N2O production: a lower availability of nitrogen substrates may mitigate short-term N2O emissions during summer anoxia; and, in the long-run (timescale of years), eutrophication will be alleviated and subsequent reoxygenation of the bay will further inhibit N2O production.


2012 ◽  
Vol 9 (3) ◽  
pp. 957-964 ◽  
Author(s):  
A. Kock ◽  
J. Schafstall ◽  
M. Dengler ◽  
P. Brandt ◽  
H. W. Bange

Abstract. Sea-to-air and diapycnal fluxes of nitrous oxide (N2O) into the mixed layer were determined during three cruises to the upwelling region off Mauritania. Sea-to-air fluxes as well as diapycnal fluxes were elevated close to the shelf break, but elevated sea-to-air fluxes reached further offshore as a result of the offshore transport of upwelled water masses. To calculate a mixed layer budget for N2O we compared the regionally averaged sea-to-air and diapycnal fluxes and estimated the potential contribution of other processes, such as vertical advection and biological N2O production in the mixed layer. Using common parameterizations for the gas transfer velocity, the comparison of the average sea-to-air and diapycnal N2O fluxes indicated that the mean sea-to-air flux is about three to four times larger than the diapycnal flux. Neither vertical and horizontal advection nor biological production were found sufficient to close the mixed layer budget. Instead, the sea-to-air flux, calculated using a parameterization that takes into account the attenuating effect of surfactants on gas exchange, is in the same range as the diapycnal flux. From our observations we conclude that common parameterizations for the gas transfer velocity likely overestimate the air-sea gas exchange within highly productive upwelling zones.


Sign in / Sign up

Export Citation Format

Share Document