The thermal regime of intertidal permafrost, George River estuary, Ungava Bay, Quebec

1992 ◽  
Vol 29 (2) ◽  
pp. 249-259 ◽  
Author(s):  
Michel Allard ◽  
Richard Fortier ◽  
Maurice K. Seguin

Permafrost in tidal-marsh sediments was studied along the estuary of George River, Ungava Bay, northern Quebec. In this macrotidal environment, wide tidal flats and marshes lie in bays along the shoreline. Discontinuous permafrost bodies occur in the silty sediments underlying the marshes in the upper part of the intertidal zone, where submersions by large tides and storm surges are rare and where the icefoot freezes to the ground in winter. The permafrost is about 5 m thick, saline, and ice poor. According to logged thermal data, a freezing-point depression of 0.9 °C is estimated for the intertidal sediments. Tidal submersions during the ice-free season have a transient warming effect on the soil profile due to water percolation in the active layer and delay freeze back at the beginning of winter. Observations in shallow drill holes and along a thermistor cable indicate that the intertidal permafrost degraded at the Kangiqsualujjuaq observation site from 1984 to 1987. From 1987 to 1990, observations and logged data clearly show aggradation and cooling of the permafrost. Those changes in ground thermal regime are the result of recent climatic variations.


Author(s):  
Nataliya Belova ◽  
Nataliya Belova ◽  
Alisa Baranskaya ◽  
Alisa Baranskaya ◽  
Osip Kokin ◽  
...  

The coasts of Baydaratskaya Bay are composed by loose frozen sediments. At Yamal Peninsula accumulative coasts are predominant at the site where pipeline crosses the coast, while thermoabrasional coast are prevail at the Ural coast crossing site. Coastal dynamics monitoring on both sites is conducted using field and remote methods starting from the end of 1980s. As a result of construction in the coastal zone the relief morphology was disturbed, both lithodynamics and thermal regime of the permafrost within the areas of several km around the sites where gas pipeline crosses coastline was changed. At Yamal coast massive removal of deposits from the beach and tideflat took place. The morphology of barrier beach, which previously was a natural wave energy dissipater, was disturbed. This promoted inland penetration of storm surges and permafrost degradation under the barrier beach. At Ural coast the topsoil was disrupted by construction trucks, which affected thermal regime of the upper part of permafrost and lead to active layer deepening. Thermoerosion and thermoabrasion processes have activated on coasts, especially at areas with icy sediments, ice wedges and massive ice beds. Construction of cofferdams resulted in overlapping of sediments transit on both coasts and caused sediment deficit on nearby nearshore zone areas. The result of technogenic disturbances was widespread coastal erosion activation, which catastrophic scale is facilitated by climate warming in the Arctic.



Author(s):  
James CROLL ◽  
David SUGDEN

ABSTRACT At a time when nobody has yet landed on the Antarctic continent (1879), this presentation and accompanying paper predicts the morphology, dynamics and thermal regime of the Antarctic ice sheet. Mathematical modelling of the ice sheet is based on the assumptions that the thickness of tabular icebergs reflects the average thickness of the ice at the margin and that the surface gradients are comparable to those of reconstructed former ice sheets in the Northern Hemisphere. The modelling shows that (a) ice is thickest near the centre at the South Pole and thins towards the margin; (b) the thickness at the pole is independent of the amount of snowfall at that place; and (c) the mean velocity at the margin, assuming a mean annual snowfall of two inches per year, is 400–500 feet per year. The thermal regime of the ice sheet is influenced by three heat sources – namely, the bed, the internal friction of ice flow and the atmosphere. The latter is the most significant and, since ice has a downwards as well as horizontal motion, this carries cold ice down into the ice sheet. Since the temperature at which ice melts is lowered by pressure at a rate of 0.0137 °F for every atmosphere of pressure (something known since 1784), much of the ice sheet and its base must be below the freezing point. Estimates of the thickness of ice at the centre depend closely on the surface gradients assumed and range between 3 and 24 miles. Such uncertainty is of concern since both the volume and gravitational attraction of the ice mass have an effect on global sea level. In order to improve our estimate of the volume of ice, we will have to wait 76 years for John Glen to develop a realistic flow law for ice.



2021 ◽  
Vol 9 (11) ◽  
pp. 1222
Author(s):  
Yutao Chi ◽  
Zengrui Rong

Disastrous storm surges and waves caused by typhoons are major marine dynamic disasters affecting the east China coast and the Changjiang River Estuary, especially when they occur coincidentally. In this study, a high-resolution wave–current coupled model consisting of ADCIRC (Advanced Circulation) and SWAN (Simulating Waves Nearshore) was established and validated. The model shows reasonable skills in reproducing the surge levels and waves. The storm surges and associated waves are then simulated for 98 typhoons affecting the Changjiang River Estuary over the past 32 years (1987–2018). Two different wind fields, the ERA reanalysis and the ERA-based synthetic wind with a theoretical typhoon model, were adopted to discern the potential uncertainties associated with winds. Model results forced by the ERA reanalysis show comparative skills with the synthetic winds, but differences may be relatively large in specific stations. The extreme surge levels with a 50-year return period are then presented based on the coupled model results and the Gumbel distribution model. Higher risk is presented in Hangzhou Bay and the nearshore region along the coast of Zhejiang. Comparative runs with and without wave effects were conducted to discern the impact of waves on the extreme surge levels. The wave setup contributes to 2–12.5% of the 50-year extreme surge level. Furthermore, the joint exceedance probabilities of high surge levels and high wave height were evaluated with the Gumbel–logistic statistic model. Given the same joint return period, the nearshore region along the coast of Zhejiang is more vulnerable with high surges and large waves than the Changjiang River Estuary with large waves and moderate surges.



2016 ◽  
Vol 42 (2) ◽  
pp. 457 ◽  
Author(s):  
F. Hrbáček ◽  
M. Oliva ◽  
K. Laska ◽  
J. Ruiz-Fernández ◽  
M. A. De Pablo ◽  
...  

Permafrost controls geomorphic processes in ice-free areas of the Antarctic Peninsula (AP) region. Future climate trends will promote significant changes of the active layer regime and permafrost distribution, and therefore a better characterization of present-day state is needed. With this purpose, this research focuses on Ulu Peninsula (James Ross Island) and Byers Peninsula (Livingston Island), located in the area of continuous and discontinuous permafrost in the eastern and western sides of the AP, respectively. Air and ground temperatures in as low as 80 cm below surface of the ground were monitored between January and December 2014. There is a high correlation between air temperatures on both sites (r=0.74). The mean annual temperature in Ulu Peninsula was -7.9 ºC, while in Byers Peninsula was -2.6 ºC. The lower air temperatures in Ulu Peninsula are also reflected in ground temperatures, which were between 4.9 (5 cm) and 5.9 ºC (75/80 cm) lower. The maximum active layer thickness observed during the study period was 52 cm in Ulu Peninsula and 85 cm in Byers Peninsula. Besides climate, soil characteristics, topography and snow cover are the main factors controlling the ground thermal regime in both areas.



2020 ◽  
Vol 14 (4) ◽  
pp. 1273-1288 ◽  
Author(s):  
Adrien Gilbert ◽  
Anna Sinisalo ◽  
Tika R. Gurung ◽  
Koji Fujita ◽  
Sudan B. Maharjan ◽  
...  

Abstract. In cold and arid climates, small glaciers with cold accumulation zones are often thought to be entirely cold based. However, scattering in ground-penetrating radar (GPR) measurements on the Rikha Samba Glacier in the Nepal Himalayas suggests a large amount of temperate ice that seems to be influenced by the presence of crevassed areas. We used a coupled thermo-mechanical model forced by a firn model accounting for firn heating to interpret the observed thermal regime. Using a simple energy conservation approach, we show that the addition of water percolation and refreezing in crevassed areas explains these observations. Model experiments show that both steady and transient thermal regimes are significantly affected by latent heat release in crevassed areas. This makes half of the glacier base temperate, resulting in an ice dynamic mainly controlled by basal friction instead of ice deformation. The timescale of thermal regime change, in response to atmospheric warming, is also greatly diminished, with a potential switch from cold to temperate basal ice in 50–60 years in the upper part of the glacier instead of the 100–150 years that it would take without the effect of the crevasses. This study highlights the crucial role of water percolation through the crevasses on the thermal regime of glaciers and validates a simple method to account for it in glacier thermo-mechanical models.



1988 ◽  
Vol 11 ◽  
pp. 206 ◽  
Author(s):  
J. G. Paren ◽  
S. Cooper

New data on the thermal regime of George VI Ice Shelf have been obtained by thermistor chains installed through the use of a hot-water drill. Twenty thermistors are used at each site, spaced close together at sea-level and at the base of the ice shelf, and farther apart elsewhere in the ice shelf and in the sea beneath. Based on earlier observations (Bishop and Walton 1981, fig. 7) that the 10 m temperature warms from around −10°C in the central melt-lake area of the ice shelf (from 70°45′ to 71°45′S) to around −2°C near the northern ice front (70°00′S), the thermistor chains were deployed at three sites (70°00′, 70°15′ and 70°30′S) along a presumed flow line. The observations show that as ice flows towards the northern ice front of George VI Ice Shelf, it becomes more temperate in character. Heat from the sea and from the percolation of melt water at the upper surface progressively warms the ice shelf. At mid-depth (the coldest level in the ice shelf) the recorded temperatures were −6°C off Moore Point (70°30′S), −4°C off Carse Point (70°15′S) and, near the northern ice front (70°00′S), between −1.6° and −1.8°C depending on the time of year. The ice-shelf temperatures near the ice front, warmer in mid-summer than the freezing point of fully saline sea-water, are most unusual. The only explanation of the high, fluctuating temperatures found 1 year after drilling is that the hole through the ice shelf was open, allowing unimpeded water movement. This implies that the ice shelf is also warmed by the percolation of sea-water, whose presence was confirmed by ice-core drilling to below sea-level. Confirmation of the presence of brine below sea-level in the ice shelf comes from geo-electrical investigations. A Schlumberger georesistivity array modelled the ice shelf as a simple two-layer structure, with ordinary glacier overlying highly conductive ice. This is consistent with the fact that no radio echoes have been received from the bottom of George VI Ice Shelf to the north of 70°09′S. A detailed analysis of the ice-shelf / ocean-temperature profiles was undertaken. This included an analysis of the fluctuation observed in mid-summer at the warmest site and the subsequent transition to a stable isothermal profile through the submerged part of the ice shelf.





2005 ◽  
Vol 39 (9) ◽  
pp. 1783-1794 ◽  
Author(s):  
Catarina M. Magalhães ◽  
Samantha B. Joye ◽  
Rosa M. Moreira ◽  
William J. Wiebe ◽  
Adriano A. Bordalo


2018 ◽  
Vol 285 (1879) ◽  
pp. 20180724 ◽  
Author(s):  
Jansen A. Smith ◽  
John C. Handley ◽  
Gregory P. Dietl

River systems worldwide have been modified for human use and the downstream ecological consequences are often poorly understood. In the Colorado River estuary, where upstream water diversions have limited freshwater input during the last century, mollusc remains from the last several hundred years suggest widespread ecological change. The once abundant clam Mulinia modesta has undergone population declines of approximately 94% and populations of predators relying on this species as a food source have probably declined, switched to alternative prey species or both. We distinguish between the first two hypotheses using a null model of predation preference to test whether M. modesta was preyed upon selectively by the naticid snail, Neverita reclusiana , along the estuary's past salinity gradient. To evaluate the third hypothesis, we estimate available prey biomass today and in the past, assuming prey were a limiting resource. Data on the frequency of drill holes—identifiable traces of naticid predation on prey shells—showed several species, including M. modesta , were preferred prey. Neverita reclusiana was probably able to switch prey. Available prey biomass also declined, suggesting the N. reclusiana population probably also declined. These results indicate a substantial change to the structure of the benthic food web. Given the global scale of water management, such changes have probably also occurred in many of the world's estuaries.



2011 ◽  
Vol 1 (32) ◽  
pp. 22
Author(s):  
Jinshan Zhang ◽  
Jun Kong ◽  
Zhiyi Lei ◽  
Weisheng Zhang

ABSTRACT This paper studied the interaction between the Estuary dynamic and storm surge induced by super tropical cyclone Winnie(1997) in Yangtze River Estuary with nested numerical model, which is driven by meso-scale meteorological model established. And the results indicate that, storm surges have significant influences on the Yangtze River Estuary. The maximum water level increase caused by storm surge can be monitored between Jiangyin and Xuliujing, whose exact position fluctuates owing to effects of the upstream runoff and estuarine tide. Furthermore the general laws about the relationships among astronomical tide, storm surge, and flood are revealed in this paper, and flood water level under storm surge events is predicted also.



Sign in / Sign up

Export Citation Format

Share Document