Structural evolution of Archean rocks in the western Wawa subprovince, Minnesota: refolding of precleavage nappes during D2 transpression

1992 ◽  
Vol 29 (10) ◽  
pp. 2146-2155 ◽  
Author(s):  
M. A. Jirsa ◽  
D. L. Southwick ◽  
T. J. Boerboom

Recent mapping in the western Wawa subprovince (the Vermilion district and its westward extensions in Minnesota) has identified a major, northeast-trending stratotectonic break, informally called the Leech Lake structural disconformity (LLSD), that separates two contrasting terranes. North of the LLSD are elongate, east-northeast-trending, fault-bounded panels of volcanic rocks, which are mostly north topping and homoclinal. South of the LLSD, large-scale, northwest-trending folds involve basaltic sequences that are stratigraphically overlain by thick sections of dacitic volcaniclastic and turbiditic rocks. However, the most prominent outcrop-scale deformational features are northeast-trending vertical folds and associated axial-planar cleavage related to transpression in D2. D1 minor folds and cleavage are rare.New field data indicate that the large folds in a predominantly sedimentary part of the southern terrane are early formed (D0–D1), and nappe-like. The precise form of the early folds is largely obscured by (i) superimposed folds and metamorphism contemporaneous with D2, (ii) faulting that began in D2 and outlasted folding, and (iii) emplacement of the Giants Range batholith and associated plutons. Nevertheless, the presence in the southern terrane of large areas of shallow-plunging, downward-facing rock sequences and the map pattern of rock units imply that a large south-verging, northwest-plunging thrust nappe (or nappes) antedated D2. Where the nappe lacked thick, rigid volcanic layers, accommodation to D2 transpression took the form of abundant Z folds. Much of the observed Z asymmetry of F2 folds may have resulted from compression and shear oblique to the trend of rock units. In contrast, early thrusts are inferred to have positioned volcanic units north of the LLSD such that their strike was nearly perpendicular to D2 compression, and therefore F2 folds did not develop extensively.

1993 ◽  
Vol 130 (5) ◽  
pp. 621-629 ◽  
Author(s):  
R. A. Hughes ◽  
A. H. Cooper ◽  
P. Stone

AbstractThe Skiddaw Group comprises a marine sedimentary sequence deposited on the northern margin of eastern Avalonia in Tremadoc to Llanvirn times. It is unconformably overlain by subduction-related volcanic rocks (the Eycott and Borrowdale Volcanic groups) of mid-Ordovician age, and foreland basin marine strata of late Ordovician and Silurian age. The Skiddaw Group has a complex deformation history. Syn-depositional deformation produced soft sediment folds and an olistostrome. Volcanism was preceded (in late Llanvirn to Llandeilo times) by regional uplift and tilting of the Skiddaw Group, probably caused by the generation of melts through subduction-related processes. The Acadian (late Caledonian) deformation event produced a northeast- to east-trending regional cleavage, axial planar to large scale folds, and a later set of southward-directed thrusts with associated minor folds and crenulation cleavages. This event affected the northern Lake District probably in the late Silurian and early Devonian. The Skiddaw Group structures contrast strongly with those formed during the same event in the younger rocks of the Lake District inlier. The contrasts are attributed to differing rheological responses to varying and possibly diachronous stresses, and to possible impedence of thrusting by the combined mass of the Borrowdale Volcanic Group and the Lake District batholith.


2018 ◽  
Vol 146 (12) ◽  
pp. 4279-4302 ◽  
Author(s):  
Alex M. Kowaleski ◽  
Jenni L. Evans

Abstract An ensemble of 72 Weather Research and Forecasting (WRF) Model simulations is evaluated to examine the relationship between the track of Hurricane Sandy (2012) and its structural evolution. Initial and boundary conditions are obtained from ECMWF and GEFS ensemble forecasts initialized at 0000 UTC 25 October. The 5-day WRF simulations are initialized at 0000 UTC 27 October, 48 h into the global model forecasts. Tracks and cyclone phase space (CPS) paths from the 72 simulations are partitioned into 6 clusters using regression mixture models; results from the 4 most populous track clusters are examined. The four analyzed clusters vary in mean landfall location from southern New Jersey to Maine. Extratropical transition timing is the clearest difference among clusters; more eastward clusters show later Sandy–midlatitude trough interaction, warm seclusion formation, and extratropical transition completion. However, the intercluster variability is much smaller when examined relative to the landfall time of each simulation. In each cluster, a short-lived warm seclusion forms and contracts through landfall while lower-tropospheric potential vorticity concentrates at small radii. Despite the large-scale similarity among the clusters, relevant intercluster differences in landfall-relative extratropical transition are observed. In the easternmost cluster the Sandy–trough interaction is least intense and the warm seclusion decays the most by landfall. In the second most eastward cluster Sandy retains the most intact warm seclusion at landfall because of a slightly later (relative to landfall) and weaker trough interaction compared to the two most westward clusters. Nevertheless, the remarkably similar large-scale evolution of Sandy among the four clusters indicates the high predictability of Sandy’s warm seclusion extratropical transition before landfall.


Author(s):  
Zhonghua Tian ◽  
Wenjiao Xiao ◽  
Brian F. Windley ◽  
Peng Huang ◽  
Ji’en Zhang ◽  
...  

The orogenic architecture of the Altaids of Central Asia was created by multiple large-scale slab roll-back and oroclinal bending. However, no regional structural deformation related to roll-back processes has been described. In this paper, we report a structural study of the Beishan orogenic collage in the southernmost Altaids, which is located in the southern wing of the Tuva-Mongol Orocline. Our new field mapping and structural analysis integrated with an electron backscatter diffraction study, paleontology, U-Pb dating, 39Ar-40Ar dating, together with published isotopic ages enables us to construct a detailed deformation-time sequence: During D1 times many thrusts were propagated northwards. In D2 there was ductile sinistral shearing at 336−326 Ma. In D3 times there was top-to-W/WNW ductile thrusting at 303−289 Ma. Two phases of folding were defined as D4 and D5. Three stages of extensional events (E1−E3) separately occurred during D1−D5. Two switches of the regional stress field were identified in the Carboniferous to Early Permian (D1-E1-D2-D3-E2) and Late Permian to Early Triassic (D4-E3-D5). These two switches in the stress field were associated with formation of bimodal volcanic rocks, and an extensional interarc basin with deposition of Permian-Triassic sediments, which can be related to two stages of roll-back of the subduction zone on the Paleo-Asian oceanic margin. We demonstrate for the first time that two key stress field switches were responses to the formation of the Tuva-Mongol Orocline.


1969 ◽  
Vol 6 (1) ◽  
pp. 25-37 ◽  
Author(s):  
J. Boissonnas ◽  
S. Borsi ◽  
G. Ferrara ◽  
J. Fabre ◽  
J. Fabries ◽  
...  

The Pharusian belt of west-central Ahaggar belongs to the 'basement complex' underlying the Paleozoic and later sediments of the Sahara. This paper reports and discusses the Rb–Sr ages obtained on total rocks and minerals from two granitic stocks of the belt: the Tioueiine and Iskel intrusions.Both plutons gave good whole-rock isochrons, which show that the systems were closed 560 ± 40 m.y. ago with respect to Rb and Sr. This is, most probably, the age of crystallization. Three of the four values obtained on biotites are somewhat lower and scattered in the range 502–526 m.y. The discrepancies are probably due to deuteric reactions or incipient weathering. They can be ascribed neither to the loss of 87Sr during the cooling down of the granites, nor to rejuvenation by some later thermal or tectonic event.These studies confirm previous results of random sampling in Ahaggar and prove that large-scale igneous activity took place during the Early Cambrian Epoch. Knowing from field data that the Tioueiine and Iskel are late orogenic granites, it must be concluded that the Pharusian orogeny came to an end at that time.Such a result contradicts early assumptions, made in the field, of a middle Precambrian age for the Pharusian orogeny. It gives further weight to modern ideas concerning the 700–500 m.y. events in Africa, and it leaves time for erosion to create the Saharian platform before the deposition of the first Paleozoic sandstones.


2018 ◽  
Vol 14 (18) ◽  
pp. 305
Author(s):  
Daï Bi Seydou Mathurin ◽  
Ouattara Gbele ◽  
Koffi Gnammytchet Barthélémy ◽  
Gnanzou Allou ◽  
Coulibaly Inza

The lithological and structural observations of the region of Brobo (Central Côte d'Ivoire) indicate a succession of metasedimentary rocks (micaschists with cordierite, silstones, graphitic sediments, sandstones with amphibole-garnet, etc.) intermixed with volcanic rocks (rhyolite, dacite, andesite, basalt and the volcanoclastics). The whole is intruded by granites with one or two micas, sometimes porphyries, granodiorites, gabbros, and granite gneisses. Interpretations of Landsat ETM+ , RadarSat-1 and SRTM remote sensing imageries, as well as field data, revealed several lineament directions which, after field control, correspond to major faults and shear zones. These large structures show the N-S, NE-SW, NNE-SSW, E-W, NWSE, and NNW-SSE orientations. The field data also made it possible to describe several structures and to propose a preliminary geodynamic model for the setting and structuring of the formations of this region. This model suggests that the geodynamic took place in three stages: distension with a deformation of basement formations generating a gneissocity (D1), as well as deposits of sediments in the basins; followed by a NW-SE to E-W convergence generating a cleavage in the volcanogenic series (D2). This phase of deformation continues while creating, locally, a strain slip cleavage or a transposed schistosity. The third cleavage affects the volcanogenic series (fractures cleavages, D3) and ends in large corridors of ductile shear zones and associated faults.


Author(s):  
A.I. Malinovsky ◽  

The article discusses the results of studying heavy clastic minerals from the Cretaceous sandy rocks of the West Sakhalin Terrane, and also presents their paleogeodynamic interpretation. It is shown that in terms of mineralogical and petrographic parameters, the terrane sandstones correspond to typical graywackes and are petrogenic rocks formed mainly by destruction of igneous rocks of the source areas. The sediments were found to contain both sialic, granite-metamorphic association minerals, and femic, formed by products of the destruction of basic and ultrabasic volcanic rocks. The interpretation of the entire set of data on the content, distribution and microchemical composition of heavy minerals was carried out by comparing them with minerals from older rocks and modern sediments accumulated in known geodynamic settings. The results obtained indicate that during the Cretaceous, sedimentation occurred along the continent-ocean boundary in a basin associated with large-scale left-lateral transform movements of the Izanagi Plate relative to the Eurasian continent. The source area that supplied clastic material to that basin combined a sialic landmass composed of granite-metamorphic and sedimentary rocks, a mature deeply dissected ensialic island arc, and fragments of accretion prisms, in the structure of which involved ophiolites.


Geology ◽  
2019 ◽  
Vol 47 (10) ◽  
pp. 943-947 ◽  
Author(s):  
M.R. Reid ◽  
J.R. Delph ◽  
M.A. Cosca ◽  
W.K. Schleiffarth ◽  
G. Gençalioğlu Kuşcu

Abstract A co-investigation of mantle melting conditions and seismic structure revealed an evolutionary record of mantle dynamics accompanying the transition from subduction to collision along the Africa-Eurasia margin and the >1 km uplift of the Anatolian Plateau. New 40Ar/39Ar dates of volcanic rocks from the Eastern Taurides (southeast Turkey) considerably expand the known spatial extent of Miocene-aged mafic volcanism following a magmatic lull over much of Anatolia that ended at ca. 20 Ma. Mantle equilibration depths for these chemically diverse basalts are interpreted to indicate that early to middle Miocene lithospheric thickness in the region varied from ∼50 km or less near the Bitlis suture zone to ∼80 km near the Inner Tauride suture zone. This southward-tapering lithospheric base could be a vestige of the former interface between the subducted (and now detached) portion of the Arabian plate and the overriding Eurasian plate, and/or a reflection of mantle weakening associated with greater mantle hydration trenchward prior to collision. Asthenospheric upwelling driven by slab tearing and foundering along this former interface, possibly accompanied by convective removal of the lithosphere, could have led to renewed volcanic activity after 20 Ma. Melt equilibration depths for late Miocene and Pliocene basalts together with seismic imaging of the present lithosphere indicate that relatively invariant lithospheric thicknesses of 60–70 km have persisted since the middle Miocene. Thus, no evidence is found for large-scale (tens of kilometers) Miocene delamination of the lower lithosphere from the overriding plate, which has been proposed elsewhere to account for late Miocene and younger uplift of Anatolia.


1991 ◽  
Vol 128 (4) ◽  
pp. 307-318 ◽  
Author(s):  
C. W. Passchier ◽  
R. F. Bekendam ◽  
J. D. Hoek ◽  
P. G. H. M. Dirks ◽  
H. de Boorder

AbstractThe presence of polyphase shear zones transected by several suites of dolerite dykes in Archaean basement of the Vestfold Hills, East Antarctica, allows a detailed reconstruction of the local structural evolution. Archaean and early Proterozoic deformation at granulite facies conditions was followed by two phases of dolerite intrusion and mylonite generation in strike-slip zones at amphibolite facies conditions. A subsequent middle Proterozoic phase of brittle normal faulting led to the development of pseudotachylite, predating intrusion of the major swarm of dolerite dykes around 1250 Ma. During the later stages and following this event, pseudotachylite veins were reactivated as ductile, mylonitic thrusts under prograde conditions, culminating in amphibolite facies metamorphism around 1000–1100 Ma. This is possibly part of a large-scale tectonic event during which the Vestfold block was overthrust from the south. In a final phase of strike-slip deformation, several pulses of pseudotachylite-generating brittle faulting alternated with ductile reactivation of pseudotachylite.


Sign in / Sign up

Export Citation Format

Share Document