Implications of long-term dynamics of fish and zooplankton communities for among-lake comparisons

2006 ◽  
Vol 63 (8) ◽  
pp. 1812-1821 ◽  
Author(s):  
Julian D Olden ◽  
Olaf P Jensen ◽  
M Jake Vander Zanden

Understanding the environmental determinants of lake community composition has been a central pursuit in freshwater ecology. Previous studies have defined community composition based on temporally limited surveys, with the implicit assumption that interannual variation is negligible compared with among-lake variability. Using a long-term data set for fish and zooplankton communities in five north temperate lakes (Wisconsin, USA), we found that interannual, within-lake similarity in species composition (a measure of temporal stability in community composition) generally exceeded community similarity among lakes. Despite these differences, however, the strength of community–environment relationships were found to range widely (2%–99% explained variation) depending on the choice of single-year sample used in the analysis, a result of high temporal coherence in limnological and biological characteristics. Perhaps of greatest concern, interannual similarity in species composition showed consistent relationships with habitat variables commonly used to explain community differences among lakes. Decreasing lake area and shoreline perimeter (indicative of lower habitat heterogeneity) and seepage lakes were associated with low interannual similarity in community composition, thus confounding the ability to differentiate among lake communities according to their habitat characteristics. In light of our results, we offer a number of explicit recommendations for the selection and analysis of community data in future cross-lake studies.

Ocean Science ◽  
2014 ◽  
Vol 10 (5) ◽  
pp. 771-797 ◽  
Author(s):  
M. Lipizer ◽  
E. Partescano ◽  
A. Rabitti ◽  
A. Giorgetti ◽  
A. Crise

Abstract. An updated climatology, based on a comprehensive data set (1911–2009) of temperature, salinity and dissolved oxygen, has been produced for the whole Adriatic Sea with the variational inverse method using the DIVA (Data-Interpolating Variational Analysis) software. Climatological maps were produced at 26 levels and validated with ordinary cross-validation and with a real vs. synthetic temperature–salinity diagram intercomparison. The concept of climatology–observation misfit (COM) has been introduced as an estimate of the physical variability associated with the climatological structures. In order to verify the temporal stability of the climatology, long-term variability has been investigated in the Middle Adriatic and the South Adriatic pits, regarded as the most suitable records of possible long-term changes. Compared with previous climatologies, this study allows a clear identification of the seasonal dynamic of the southern Adriatic, where a clear oxygen minimum is typically observed in the centre of the South Adriatic Gyre. New and better resolved features emerged from this analysis: (1) below 100 m all properties profoundly differ between the central and the southern Adriatic and seem characterized by different biogeochemical dynamics; (2) the South Adriatic Pit clearly shows the remote effects of the Eastern Mediterranean Transient, while no effect is observed in the Middle Adriatic Pit; (3) the deepest part of the southern Adriatic seems now to be significantly saltier (+0.18 psu since the period 1910–1914, with an increase of +0.018 decade−1 since the late 1940s) and warmer (+0.54 °C since 1910–1914) even though a long-term temperature trend could not be statistically demonstrated; (4) the Middle Adriatic Pit shows a long-term increase in apparent oxygen utilization (+0.77 mL L−1 since 1910–1914, with a constant increase of +0.2 mL L−1 decade−1 after the 1970s).


2020 ◽  
Author(s):  
Xavier Morin ◽  
François de Coligny ◽  
Nicolas Martin-StPaul ◽  
Harald Bugmann ◽  
Maxime Cailleret ◽  
...  

ABSTRACTClimate change impacts forest functioning and dynamics, and large uncertainties remain regarding the interactions between species composition, demographic processes, and environmental drivers. There are few robust tools available to link these processes, which precludes accurate projections and recommendations for long-term forest management. Forest gap-models present a balance between complexity and generality and are widely used in predictive forest ecology. However, their relevance to tackle questions about the links between species composition, climate and forest functioning is unclear. In this regard, demonstrating the ability of gap-models to predict the growth of forest stands at the annual time scale – representing a sensitive and integrated signal of tree functioning and mortality risk - appears as a fundamental step.In this study, we aimed at assessing the ability of a gap-model to accurately predict forest growth in the short-term and potential community composition in the long-term, across a wide range of species and environmental conditions. To do so, we present the gap-model ForCEEPS, calibrated using an original parameterization procedure for the main tree species in France. ForCEEPS was shown to satisfactorily predict forest annual growth (averaged over a few years) at the plot level from mountain to Mediterranean climates, regardless the species. Such an accuracy was not gained at the cost of losing precision for long-term predictions, as the model showed a strong ability to predict potential community composition along a gradient of sites with contrasted conditions. The mechanistic relevance of ForCEEPS parameterization was explored by showing the congruence between the values of key model parameter and species functional traits. We further showed that accounting for the spatial configuration of crowns within forest stands, the effects of climatic constraints and the variability of shade tolerances in the species community are all crucial to better predict short-term productivity with gap-models.The dual ability of predicting short-term functioning and long-term community composition, as well as the balance between generality and realism (i.e., predicting accuracy) of the new generation of gap-models may open great perspectives for the exploration of the biodiversity-ecosystem functioning relationships, species coexistence mechanisms, and the impacts of climate change on forest ecosystems.


2015 ◽  
Vol 282 (1798) ◽  
pp. 20142449 ◽  
Author(s):  
Adam Jeziorski ◽  
Andrew J. Tanentzap ◽  
Norman D. Yan ◽  
Andrew M. Paterson ◽  
Michelle E. Palmer ◽  
...  

Calcium (Ca) concentrations are decreasing in softwater lakes across eastern North America and western Europe. Using long-term contemporary and palaeo-environmental field data, we show that this is precipitating a dramatic change in Canadian lakes: the replacement of previously dominant pelagic herbivores (Ca-rich Daphnia species) by Holopedium glacialis , a jelly-clad, Ca-poor competitor. In some lakes, this transformation is being facilitated by increases in macro-invertebrate predation, both from native ( Chaoborus spp . ) and introduced ( Bythotrephes longimanus ) zooplanktivores, to which Holopedium , with its jelly coat, is relatively invulnerable. Greater representation by Holopedium within cladoceran zooplankton communities will reduce nutrient transfer through food webs, given their lower phosphorus content relative to daphniids, and greater absolute abundances may pose long-term problems to water users. The dominance of jelly-clad zooplankton will likely persist while lakewater Ca levels remain low.


2012 ◽  
pp. 66-77 ◽  
Author(s):  
I. A. Lavrinenko ◽  
O. V. Lavrinenko ◽  
D. V. Dobrynin

The satellite images show that the area of marshes in the Kolokolkova bay was notstable during the period from 1973 up to 2011. Until 2010 it varied from 357 to 636 ha. After a severe storm happened on July 24–25, 2010 the total area of marshes was reduced up to 43–50 ha. The mean value of NDVI for studied marshes, reflecting the green biomass, varied from 0.13 to 0.32 before the storm in 2010, after the storm the NDVI decreased to 0.10, in 2011 — 0.03. A comparative analysis of species composition and structure of plant communities described in 2002 and 2011, allowed to evaluate the vegetation changes of marshes of the different topographic levels. They are fol­lowing: a total destruction of plant communities of the ass. Puccinellietum phryganodis and ass. Caricetum subspathaceae on low and middle marches; increasing role of halophytic species in plant communities of the ass. Caricetum glareosae vic. Calamagrostis deschampsioides subass. typicum on middle marches; some changes in species composition and structure of plant communities of the ass. Caricetum glareosae vic. Calamagrostis deschampsioides subass. festucetosum rubrae on high marches and ass. Parnassio palustris–Salicetum reptantis in transition zone between marches and tundra without changes of their syntaxonomy; a death of moss cover in plant communities of the ass. Caricetum mackenziei var. Warnstorfia exannulata on brackish coastal bogs. The possible reasons of dramatic vegetation dynamics are discussed. The dating of the storm makes it possible to observe the directions and rates of the succession of marches vegetation.


2021 ◽  
pp. 108602662110316
Author(s):  
Tiziana Russo-Spena ◽  
Nadia Di Paola ◽  
Aidan O’Driscoll

An effective climate change action involves the critical role that companies must play in assuring the long-term human and social well-being of future generations. In our study, we offer a more holistic, inclusive, both–and approach to the challenge of environmental innovation (EI) that uses a novel methodology to identify relevant configurations for firms engaging in a superior EI strategy. A conceptual framework is proposed that identifies six sets of driving characteristics of EI and two sets of beneficial outcomes, all inherently tensional. Our analysis utilizes a complementary rather than an oppositional point of view. A data set of 65 companies in the ICT value chain is analyzed via fuzzy-set comparative analysis (fsQCA) and a post-QCA procedure. The results reveal that achieving a superior EI strategy is possible in several scenarios. Specifically, after close examination, two main configuration groups emerge, referred to as technological environmental innovators and organizational environmental innovators.


2021 ◽  
pp. 089020702110173
Author(s):  
Nadin Beckmann ◽  
Damian P Birney ◽  
Amirali Minbashian ◽  
Jens F Beckmann

The study aimed to investigate the status of within-person state variability in neuroticism and conscientiousness as individual differences constructs by exploring their (a) temporal stability, (b) cross-context consistency, (c) empirical links to selected antecedents, and (d) empirical links to longer term trait variability. Employing a sample of professionals ( N = 346) from Australian organisations, personality state data together with situation appraisals were collected using experience sampling methodology in field and repeatedly in lab-like settings. Data on personality traits, cognitive ability, and motivational mindsets were collected at baseline and after two years. Contingent (situation contingencies) and non-contingent (relative SD) state variability indices were relatively stable over time and across contexts. Only a small number of predictive effects of state variability were observed, and these differed across contexts. Cognitive ability appeared to be associated with state variability under lab-like conditions. There was limited evidence of links between short-term state and long-term trait variability, except for a small effect for neuroticism. Some evidence of positive manifold was found for non-contingent variability. Systematic efforts are required to further elucidate the complex pattern of results regarding the antecedents, correlates and outcomes of individual differences in state variability.


2021 ◽  
pp. 002224372110092
Author(s):  
Zhenling Jiang ◽  
Dennis J. Zhang ◽  
Tat Chan

This paper studies how receiving a bonus changes the consumers’ demand for auto loans and the risk of future delinquency. Unlike traditional consumer products, auto loans have a long-term impact on consumers’ financial state because of the monthly payment obligation. Using a large consumer panel data set of credit and employment information, the authors find that receiving a bonus increases auto loan demand by 21 percent. These loans, however, are associated with higher risk, as the delinquency rate increases by 18.5 −31.4 percent depending on different measures. In contrast, an increase in consumers’ base salary will increase the demand for auto loans but not the delinquency. By comparing consumers with bonuses with those without bonuses, the authors find that bonus payments lead to both demand expansion and demand shifting on auto loans. The empirical findings help shed light on how consumers make financial decisions and have important implications for financial institutions on when demand for auto loans and the associated risk arise.


Water ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 107
Author(s):  
Elahe Jamalinia ◽  
Faraz S. Tehrani ◽  
Susan C. Steele-Dunne ◽  
Philip J. Vardon

Climatic conditions and vegetation cover influence water flux in a dike, and potentially the dike stability. A comprehensive numerical simulation is computationally too expensive to be used for the near real-time analysis of a dike network. Therefore, this study investigates a random forest (RF) regressor to build a data-driven surrogate for a numerical model to forecast the temporal macro-stability of dikes. To that end, daily inputs and outputs of a ten-year coupled numerical simulation of an idealised dike (2009–2019) are used to create a synthetic data set, comprising features that can be observed from a dike surface, with the calculated factor of safety (FoS) as the target variable. The data set before 2018 is split into training and testing sets to build and train the RF. The predicted FoS is strongly correlated with the numerical FoS for data that belong to the test set (before 2018). However, the trained model shows lower performance for data in the evaluation set (after 2018) if further surface cracking occurs. This proof-of-concept shows that a data-driven surrogate can be used to determine dike stability for conditions similar to the training data, which could be used to identify vulnerable locations in a dike network for further examination.


Sign in / Sign up

Export Citation Format

Share Document