Evidence that estrogen receptor β enhances MMP-13 promoter activity in HIG-82 cells and that this enhancement can be influenced by ligands and involves specific promoter sites

2007 ◽  
Vol 85 (3) ◽  
pp. 326-336 ◽  
Author(s):  
Ting Lu ◽  
Yamini Achari ◽  
Jerome B. Rattner ◽  
David A. Hart

Degradation of articular cartilage is characteristic of osteoarthritis, and matrix metalloproteinase-13 (MMP-13) has been implicated in this condition. Estrogen receptors (ERs) are present in connective tissues, indicating these tissues' potential responsiveness to estrogen. We based this study on the hypothesis that estrogen receptor β (ERβ) can modulate MMP-13 promoter activity. Transfection of cells with ERβ constructs led to the induction of the endogenous MMP-13 gene, as evidenced by increased mRNA levels. The results also indicated that MMP-13 promoter construct activity in the HIG-82 cell line significantly increased when ERβ was present, and that estrogen downregulated this response in a dose-dependent manner. ERβ was shown to enhance MMP-13 expression somewhat more strongly than ERα, and the impact of a number of selective ER modulators (tamoxifen, raloxifene, and ICI 182,780) on ERβ enhancement of promoter activity was found to be significantly less than that of estrogen. Furthermore, transcription regulatory sites in the MMP-13 promoter, specifically AP-1 and PEA-3, were shown to act in conjunction to mediate ERβ effects. Thus, ERβ likely influences MMP-13 promoter expression in normal and disease processes.

2013 ◽  
Vol 9 ◽  
pp. 2866-2876 ◽  
Author(s):  
Silke Felix ◽  
Louis P Sandjo ◽  
Till Opatz ◽  
Gerhard Erkel

Survivin, a member of the IAP (inhibitor of apoptosis) gene family, is overexpressed in virtually all human cancers and is functionally involved in the inhibition of apoptosis, regulation of cell proliferation, metastasis and resistance to therapy. Because of its upregulation in malignancy, survivin has currently attracting considerable interest as a new target for anticancer therapy. In a screening of approximately 200 strains of imperfect fungi for the production of inhibitors of survivin promoter activity, a new drimane sesquiterpene lactone, SF002-96-1, was isolated from fermentations of an Aspergillus species. The compound inhibited survivin promoter activity in transiently transfected Colo 320 cells in a dose dependent manner with IC50 values of 3.42 µM (1.3 µg/mL). Moreover, it also reduced mRNA levels and protein synthesis of survivin and triggered apoptosis.


Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1156
Author(s):  
Madelaine Sugasti-Salazar ◽  
Yessica Y. Llamas-González ◽  
Dalkiria Campos ◽  
José González-Santamaría

Mayaro virus (MAYV) hijacks the host’s cell machinery to effectively replicate. The mitogen-activated protein kinases (MAPKs) p38, JNK, and ERK1/2 have emerged as crucial cellular factors implicated in different stages of the viral cycle. However, whether MAYV uses these MAPKs to competently replicate has not yet been determined. The aim of this study was to evaluate the impact of MAPK inhibition on MAYV replication using primary human dermal fibroblasts (HDFs) and HeLa cells. Viral yields in supernatants from MAYV-infected cells treated or untreated with inhibitors SB203580, SP600125, U0126, or Losmapimod were quantified using plaque assay. Additionally, viral protein expression was analyzed using immunoblot and immunofluorescence. Knockdown of p38⍺/p38β isoforms was performed in HDFs using the PROTACs molecule NR-7h. Our data demonstrated that HDFs are highly susceptible to MAYV infection. SB203580, a p38 inhibitor, reduced MAYV replication in a dose-dependent manner in both HDFs and HeLa cells. Additionally, SB203580 significantly decreased viral E1 protein expression. Similarly, knockdown or inhibition of p38⍺/p38β isoforms with NR-7h or Losmapimod, respectively, affected MAYV replication in a dose-dependent manner. Collectively, these findings suggest that p38 could play an important role in MAYV replication and could serve as a therapeutic target to control MAYV infection.


Endocrinology ◽  
2004 ◽  
Vol 145 (12) ◽  
pp. 5525-5531 ◽  
Author(s):  
Gary M. Leong ◽  
Sofia Moverare ◽  
Jesena Brce ◽  
Nathan Doyle ◽  
Klara Sjögren ◽  
...  

Abstract Suppressors of cytokine signaling (SOCS) are important negative regulators of cytokine action. We recently reported that estrogen stimulates SOCS-2 expression and inhibits GH signaling in kidney cells. The effects of estrogen on SOCS expression in other tissues are unclear. The aim of this study was to investigate in vivo and in vitro whether estrogen affected SOCS expression in the liver, a major target organ of GH. The in vivo hepatic effects of estrogen on ovariectomized mice lacking estrogen receptor (ER)-α, ERβ, or both and their wild-type littermates were examined by DNA microarray analysis. In vitro, the effects of estrogen on SOCS expression in human hepatoma cells were examined by reverse transcription quantitative PCR. Long-term (3 wk) estrogen treatment induced a 2- to 3-fold increase in hepatic expression of SOCS-2 and -3 in wild-type and ERβ knockout mice but not in those lacking ERα or both ER subtypes. Short-term treatment (at 24 h) increased the mRNA level of SOCS-3 but not SOCS-2. In cultured hepatoma cells, estrogen increased SOCS-2 and -3 mRNA levels by 2-fold in a time- and dose-dependent manner (P < 0.05). Estrogen induced murine SOCS-3 promoter activity by 2-fold (P < 0.05) in constructs containing a region between nucleotides −1862 and −855. Moreover, estrogen and GH had additive effects on the SOCS-3 promoter activity. In summary, estrogen, via ERα, up-regulated hepatic expression of SOCS-2 and -3, probably through transcriptional activation. This indicates a novel mechanism of estrogen regulation of cytokine action.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3569
Author(s):  
Yicheng Tan ◽  
Zhang Ye ◽  
Mansheng Wang ◽  
Muhammad Faisal Manzoor ◽  
Rana Muhammad Aadil ◽  
...  

In this study, the impact of different cell disruption techniques (high-pressure micro fluidization (HPMF), ionic liquids (ILs), multi-enzyme (ME), and hydrochloric acid (HCl)) on the chemical composition and biological activity of astaxanthin (AST) obtained from Haematococcus pluvialis was investigated. Results indicated that all cell disruption techniques had a significant effect on AST composition, which were confirmed by TLC and UPC2 analysis. AST recovery from HCl (HCl-AST) and ILs (ILs-AST) cell disruption techniques was dominant by free and monoesters AST, while AST recovery from HPMF (HPMF-AST) and ME (ME-AST) cell disruption techniques was composed of monoesters, diesters, and free AST. Further biological activity analysis displayed that HCl-AST showed the highest ABTS and DPPH activity, while ILs-AST showed better results against the ORAC assay. Additionally, ILs-AST exhibits a stronger anti-proliferation of HepG2 cells in a dose-dependent manner, which was ascribed to AST-induced ROS in to inhibit the proliferative of cancer cells.


2011 ◽  
Vol 39 (06) ◽  
pp. 1253-1260 ◽  
Author(s):  
Sang Mi Han ◽  
Joo Hong Yeo ◽  
Yoon Hee Cho ◽  
Sok Cheon Pak

For cosmetic reasons, the demand for effective and safe skin-whitening agents is high. Since the key enzyme in the melanin synthetic pathway is tyrosinase, many depigmenting agents in the treatment of hyperpigmentation act as tyrosinase inhibitors. In this study, we have investigated the hypo-pigmentary mechanism of royal jelly in a mouse melanocyte cell line, B16F1. Treatment of B16F1 cells with royal jelly markedly inhibited melanin biosynthesis in a dose-dependent manner. Decreased melanin content occurred through the decrease of tyrosinase activity. The mRNA levels of tyrosinase were also reduced by royal jelly. These results suggest that royal jelly reduces melanin synthesis by down-regulation of tyrosinase mRNA transcription and serves as a new candidate in the design of new skin-whitening or therapeutic agents.


1999 ◽  
Vol 340 (1) ◽  
pp. 69-76 ◽  
Author(s):  
Russell R. HOOVER ◽  
Klaus H. THOMAS ◽  
Joanna FLOROS

Glucocorticoids have complex effects on human surfactant protein (SP) SP-A1 and SP-A2 gene expression that occur at both transcriptional and post-transcriptional levels. In the lung adenocarcinoma cell line NCI-H441, dexamethasone causes a dose-dependent decrease in total SP-A mRNA levels and inhibits SP-A gene transcription. In this study, a deletional analysis of the SP-A1 promoter was performed in order to identify cis-acting elements that mediate dexamethasone responsiveness in NCI-H441 cells. The region -32/+63 relative to the start of SP-A1 transcription mediated both basal promoter activity and dexamethasone repression of transcription. Removal of the region +18/+63 abolished dexamethasone responsiveness, indicating that sequences within this region are necessary for the inhibitory effect. Furthermore, the region -32/+63 formed a sequence-specific DNA-protein complex with NCI-H441 nuclear extract. This DNA-protein complex was induced by dexamethasone exposure and its formation was mediated partially by sequences within the region +26/+63.


Endocrinology ◽  
2006 ◽  
Vol 147 (4) ◽  
pp. 1924-1931 ◽  
Author(s):  
Toni R. Pak ◽  
Wilson C. J. Chung ◽  
James L. Roberts ◽  
Robert J. Handa

2012 ◽  
Vol 32 (suppl_1) ◽  
Author(s):  
Liang Hu ◽  
Michael A Nardi ◽  
Michael Merolla ◽  
Yajaira Suarez ◽  
Jeffrey Berger

Arachidonic acid (AA) is converted to thromboxane A2 via the cyclooxygenase pathway; however its exact mechanism of platelet activation is uncertain. Inhibition of this pathway via aspirin highlights the importance of this pathway in decreasing thrombotic events. In the present study, we investigate the effect of AA on platelet activity indicators (leukocyte- and monocyte-platelet aggregation [LPA, MPA] and reticulated platelets [RP]), as well as the expression (mRNA and protein) of platelet markers PF4 and Par-1, previously well established platelet transcripts with quantitative determinations. To this end, whole blood was incubated with AA (150mM) for 30 min at room temperature in the absence or presence of aspirin (1mM) prior to addition of antibodies for platelet activity indicators, and isolating platelets for mRNA and protein expression. LPA and MPA were significantly increased after AA stimulation in a dose dependent manner, and were inhibited by aspirin treatment. AA significantly increased PF4 and Par-1 protein level as determined by flow cytometry and western blot assays. Pretreatment with aspirin also attenuated this increase in protein levels. Surprisingly, AA stimulation significantly increased thiazole orange staining (a measure of nucleic acids), another marker of increased platelet activity. Importantly, these results suggest that AA-mediated platelet activation produced an overall increase in platelet total RNA content. To confirm these findings, we analyzed the mRNA expression of PF4 and Par-1 by quantitative real time PCR from platelets treated with AA. Interestingly, AA significantly up-regulated the platelet mRNA transcripts of PF4 and Par-1 by 40% to 60%, and pretreatment with aspirin completely attenuated this effect supporting the specificity of the AA effect on platelet RNA. Altogether, these data suggest that platelet mRNA is affected by AA stimulation, which is attenuated by pretreatment with aspirin. However, the mechanisms responsible for the increased mRNA levels and expression of PF4 and Par-1 (processing of pre-RNA to mRNA) require further investigation. Importantly, our findings provide novel insight regarding platelet activation and a better understanding of mediators in the processes of thrombosis and hemostasis.


1996 ◽  
Vol 270 (5) ◽  
pp. E873-E881 ◽  
Author(s):  
M. S. Kansara ◽  
A. K. Mehra ◽  
J. Von Hagen ◽  
E. Kabotyansky ◽  
P. J. Smith

Acyl-CoAsynthetase (ACS) is a key gene for cellular utilization of long-chain fatty acids. We characterized its regulation by physiological concentrations of insulin that acutely regulate metabolism. Our results demonstrate that subnanomolar insulin rapidly and maximally stimulates ACS gene transcription in the absence of protein synthesis; 0.5 nM insulin produced a 2.3 +/- 0.1-fold increase in ACS mRNA levels and induced ACS gene transcription 2.4 +/- 0.3-fold. The insulin sensitivity of ACS was compared with lipoprotein lipase (LPL) and stearoyl-CoA desaturase-1 (SCD-1), which were both less sensitive to insulin. Physiological triiodothyronine (10 nm) also induced ACS mRNA 2.4 +/- 0.1-fold and gene transcription 2.8 +/- 0.3-fold and coordinately induced LPL and SCD-1 mRNA and gene transcription. Because insulin and adenosine 3',5'-cyclic monophosphate often regulate genes involved in lipid and carbohydrate metabolism in a reciprocal manner, we evaluated effects of 1-methyl-3-isobutylxanthine (MIX).ACS mRNA levels were strongly downregulated by MIX in a dose-dependent manner, and ACS gene transcription inhibited in a coordinate manner with LPL and SCD-1. These data demonstrate a uniquely sensitive pattern of stimulation of ACS gene transcription by insulin with reciprocal regulation by MIX, and they suggest a significant role for ACS as a tightly regulated “gatekeeper” gene participating in the control of adipocyte metabolism.


Sign in / Sign up

Export Citation Format

Share Document