Identification of a coenzyme A – glutathione disulfide (DSI), a modified coenzyme A disulfide (DSII), and a NADPH-dependent coenzyme A – glutathione disulfide reductase in E. coli

1977 ◽  
Vol 55 (10) ◽  
pp. 1019-1027 ◽  
Author(s):  
Peter C. Loewen

The nucleotides DSI and DSII induced during a slowdown in growth of E. coli have been characterized using chemical and biochemical analysis and by enzymic and alkaline fragmentation. DSI consists of coenzyme A and glutathione joined by a disulfide linkage. DSI could be isolated either containing Fe(III) with an A250:260 ratio of 1.05 or not containing iron with an A250:260 of 0.87. DSII (isolated in 10% the yield of DSI) is a coenzyme A disulfide dimer that also contains two molecules of glutamic acid. DSI was a substrate for NADPH-dependent CoAS-SG reductase (EC 1.6.4.6) which was present in crude extracts of E. coli. The specific activity of CoAS-SG reductase increased during growth from early log phase into stationary phase and during a shift from aerobic to anaerobic growth.

1979 ◽  
Vol 57 (2) ◽  
pp. 107-111 ◽  
Author(s):  
Peter C. Loewen

Log phase cells of Escherichia coli growing in minimal medium contain a basal level of glutathione (5 pmol/mL per Klett unit) which can increase more than sixfold when the cells reach stationary phase. Since the addition of cysteine alone to log phase cells illicits the same response, the increase in the intracellular pool of glutathione appears to be influenced by the amount of cysteine available for glutathione synthesis. Glucose depletion at low cell densities resulted in a decrease in the glutathione pool while the addition of amino acids other than cysteine did not affect the glutathione pool. Depletion of ammonia or proline as the nitrogen source also resulted in a decrease in the glutathione pool to one-third of the original basal level as did a shift to anaerobic growth. The large glutathione pool in stationary phase cells dropped from 31.5 to 4.5 pmol/mL per Klett unit within 30 min of transfer to fresh medium. There was no apparent correlation between changes in the glutathione and coenzyme A – glutathione disulfide (CoASSG) pools after a variety of metabolic disruptions.


2021 ◽  
Author(s):  
Enrique Joffré ◽  
Xue Xiao ◽  
Mário S. P. Correia ◽  
Intawat Nookaew ◽  
Samantha Sasse ◽  
...  

AbstractEnterotoxigenic Escherichia coli (ETEC) is a major cause of diarrhea in children and adults in endemic areas. Gene regulation of ETEC during growth in vitro and in vivo needs to be further evaluated, and here we describe the full transcriptome and metabolome of ETEC during growth from mid-logarithmic growth to stationary phase in rich medium (LB medium). We identified specific genes and pathways subjected to rapid transient alterations in gene expression and metabolite production during the transition between logarithmic to stationary growth. The transient phase during late exponential growth is different from the subsequent induction of stationary phase-induced genes, including stress and survival responses as described earlier. The transient phase was characterized by the repression of genes and metabolites involved in organic substance transport. Genes involved in fucose and putrescine metabolism were upregulated, and genes involved in iron transport were repressed. Expression of toxins and colonization factors were not changed, suggesting retained virulence. Metabolomic analyses showed that the transient phase was characterized by a drop of intracellular amino acids, e.g., L-tyrosine, L-tryptophan, L-phenylalanine, L-leucine, and L-glutamic acid, followed by increased levels at induction of stationary phase. A pathway enrichment analysis of the entire transcriptome and metabolome showed activation of pathways involved in the degradation of neurotransmitters aminobutyrate (GABA) and precursors of 5-hydroxytryptamine (serotonin). This work provides a comprehensive framework for further studies on transcriptional and metabolic regulation in pathogenic E. coli.ImportanceWe show that E. coli, exemplified by the pathogenic subspecies enterotoxigenic E. coli (ETEC), undergoes a stepwise transcriptional and metabolic transition into the stationary phase. At a specific entry point, E. coli induces activation and repression of specific pathways. This leads to a rapid decrease of intracellular levels of L-tyrosine, L-tryptophan, L-phenylalanine, L-leucine, and L-glutamic acid due to metabolism into secondary compounds. The resulting metabolic activity leads to an intense but short peak of indole production, suggesting that this is the previously described “indole peak,” rapid decrease of intermediate molecules of bacterial neurotransmitters, increased putrescine and fucose uptake, increased glutathione levels, and decreased iron uptake. This specific transient shift in gene expression and metabolomics is short-lived and disappears when bacteria enter the stationary phase. We suggest it mainly prepares bacteria for ceased growth, but the pathways involved suggest that this transient phase substantially influences survival and virulence.


Microbiology ◽  
2009 ◽  
Vol 155 (1) ◽  
pp. 69-79 ◽  
Author(s):  
Christopher L. Case ◽  
Jason R. Rodriguez ◽  
Biswarup Mukhopadhyay

Methanocaldococcus jannaschii, a deeply rooted hyperthermophilic anaerobic methanarchaeon from a deep-sea hydrothermal vent, carries an NADH oxidase (Nox) homologue (MJ0649). According to the characteristics described here, MJ0649 represents an unusual member within group 3 of the flavin-dependent disulfide reductase (FDR) family. This FDR group comprises Nox, NADH peroxidases (Npx) and coenzyme A disulfide reductases (CoADRs); each carries a Cys residue that forms Cys-sulfenic acid during catalysis. A sequence analysis identified MJ0649 as a CoADR homologue. However, recombinant MJ0649 (rMJNox), expressed in Escherichia coli and purified to homogeneity an 86 kDa homodimer with 0.27 mol FAD (mol subunit)−1, showed Nox but not CoADR activity. Incubation with FAD increased FAD content to 1 mol (mol subunit)−1 and improved NADH oxidase activity 3.4-fold. The FAD-incubated enzyme was characterized further. The optimum pH and temperature were ≥10 and ≥95 °C, respectively. At pH 7 and 83 °C, apparent K m values for NADH and O2 were 3 μM and 1.9 mM, respectively, and the specific activity at 1.4 mM O2 was 60 μmol min−1 mg−1; 62 % of NADH-derived reducing equivalents were recovered as H2O2 and the rest probably generated H2O. rMjNox had poor NADPH oxidase, NADH peroxidase and superoxide formation activities. It reduced ferricyanide, plumbagin and 5,5′-dithiobis(2-nitrobenzoic acid), but not disulfide coenzyme A and disulfide coenzyme M. Due to a high K m, O2 is not a physiologically relevant substrate for MJ0649; its true substrate remains unknown.


2000 ◽  
Vol 66 (12) ◽  
pp. 5253-5258 ◽  
Author(s):  
Henry E. Valentin ◽  
Timothy A. Mitsky ◽  
Debbie A. Mahadeo ◽  
Minhtien Tran ◽  
Kenneth J. Gruys

ABSTRACT The genetic operon for propionic acid degradation inSalmonella enterica serovar Typhimurium contains an open reading frame designated prpE which encodes a propionyl coenzyme A (propionyl-CoA) synthetase (A. R. Horswill and J. C. Escalante-Semerena, Microbiology 145:1381–1388, 1999). In this paper we report the cloning of prpE by PCR, its overexpression in Escherichia coli, and the substrate specificity of the enzyme. When propionate was utilized as the substrate for PrpE, a Km of 50 μM and a specific activity of 120 μmol � min−1 � mg−1 were found at the saturating substrate concentration. PrpE also activated acetate, 3-hydroxypropionate (3HP), and butyrate to their corresponding coenzyme A esters but did so much less efficiently than propionate. When prpE was coexpressed with the polyhydroxyalkanoate (PHA) biosynthetic genes from Ralstonia eutropha in recombinant E. coli, a PHA copolymer containing 3HP units accumulated when 3HP was supplied with the growth medium. To compare the utility of acyl-CoA synthetases to that of an acyl-CoA transferase for PHA production, PHA-producing recombinant strains were constructed to coexpress the PHA biosynthetic genes with prpE, with acoE (an acetyl-CoA synthetase gene from R. eutropha [H. Priefert and A. Steinb�chel, J. Bacteriol. 174:6590–6599, 1992]), or with orfZ (an acetyl-CoA:4-hydroxybutyrate-CoA transferase gene from Clostridium propionicum [H. E. Valentin, S. Reiser, and K. J. Gruys, Biotechnol. Bioeng. 67:291–299, 2000]). Of the three enzymes, PrpE and OrfZ enabled similar levels of 3HP incorporation into PHA, whereas AcoE was significantly less effective in this capacity.


1984 ◽  
Vol 49 (8) ◽  
pp. 1921-1926 ◽  
Author(s):  
Michal Lebl ◽  
Tomislav Barth ◽  
Denis J. Crankshaw ◽  
Bohuslav Černý ◽  
Edwin E. Daniel ◽  
...  

The title compound (specific activity 11.1-32.7 Ci (0.41-1.22 TBq)/mmol) was prepared by iodination and subsequent catalytic replacement of iodine by tritium. The analogue which was unstable in the form of a lyophilizate was purified by reversed phase liquid chromatography. Using the N,N'-dicyclohexylcarbodiimide method, the pure analogue was converted into N-hydroxybenzotriazolyl ester, an irreversible oxytocin inhibitor. However, attempts to label specifically the uterotonic receptor, present in the enriched rat myometrium fraction, were hithero unsuccessful


Microbiology ◽  
2006 ◽  
Vol 152 (7) ◽  
pp. 2129-2135 ◽  
Author(s):  
Taku Oshima ◽  
Francis Biville

Functional characterization of unknown genes is currently a major task in biology. The search for gene function involves a combination of various in silico, in vitro and in vivo approaches. Available knowledge from the study of more than 21 LysR-type regulators in Escherichia coli has facilitated the classification of new members of the family. From sequence similarities and its location on the E. coli chromosome, it is suggested that ygiP encodes a lysR regulator controlling the expression of a neighbouring operon; this operon encodes the two subunits of tartrate dehydratase (TtdA, TtdB) and YgiE, an integral inner-membrane protein possibly involved in tartrate uptake. Expression of tartrate dehydratase, which converts tartrate to oxaloacetate, is required for anaerobic growth on glycerol as carbon source in the presence of tartrate. Here, it has been demonstrated that disruption of ygiP, ttdA or ygjE abolishes tartrate-dependent anaerobic growth on glycerol. It has also been shown that tartrate-dependent induction of the ttdA-ttdB-ygjE operon requires a functional YgiP.


Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 810
Author(s):  
Md. Golam Kibria ◽  
Akari Fukutani ◽  
Yoko Akazawa-Ogawa ◽  
Yoshihisa Hagihara ◽  
Yutaka Kuroda

In this study, we assessed the potential of arginine and lysine solubility-enhancing peptide (SEP) tags to control the solubility of a model protein, anti-EGFR VHH-7D12, in a thermally denatured state at a high temperature. We produced VHH-7D12 antibodies attached with a C-terminal SEP tag made of either five or nine arginines or lysines (7D12-C5R, 7D12-C9R, 7D12-C5K and 7D12-C9K, respectively). The 5-arginine and 5-lysine SEP tags increased the E. coli expression of VHH-7D12 by over 80%. Biophysical and biochemical analysis confirmed the native-like secondary and tertiary structural properties and the monomeric nature of all VHH-7D12 variants. Moreover, all VHH-7D12 variants retained a full binding activity to the EGFR extracellular domain. Finally, thermal stress with 45-minute incubation at 60 and 75 °C, where VHH-7D12 variants are unfolded, showed that the untagged VHH-7D12 formed aggregates in all of the four buffers, and the supernatant protein concentration was reduced by up to 35%. 7D12-C5R and 7D12-C9R did not aggregate in Na-acetate (pH 4.7) and Tris-HCl (pH 8.5) but formed aggregates in phosphate buffer (PB, pH 7.4) and phosphate buffer saline (PBS, pH 7.4). The lysine tags (either C5K or C9K) had the strongest solubilization effect, and both 7D12-C5K and 7D12-C9K remained in the supernatant. Altogether, our results indicate that, under a thermal stress condition, the lysine SEP tags solubilization effect is more potent than that of an arginine SEP tags, and the SEP tags did not affect the structural and functional properties of the protein.


1964 ◽  
Vol 10 (1) ◽  
pp. 29-35 ◽  
Author(s):  
G. J. Stine ◽  
W. N. Strickland ◽  
R. W. Barratt

Nine methods for disrupting the mycelium of Neurospora crassa have been compared. Protein percentages are calculated per gram dry weight of mycelium. A TPN-specific glutamic acid dehydrogenase was extracted and the efficiency of each extraction method is given as total enzyme extracted and specific activity. In terms of total protein, total enzyme, and practicality of the method, the Hughes Press, the French Press and the Raper–Hyatt Press were found to be the most efficient. The advantages and limitations of each method are considered.


1966 ◽  
Vol 101 (3) ◽  
pp. 591-597 ◽  
Author(s):  
R M O'Neal ◽  
R E Koeppe ◽  
E I Williams

1. Free glutamic acid, aspartic acid, glutamic acid from glutamine and, in some instances, the glutamic acid from glutathione and the aspartic acid from N-acetyl-aspartic acid were isolated from the brains of sheep and assayed for radioactivity after intravenous injection of [2-(14)C]glucose, [1-(14)C]acetate, [1-(14)C]butyrate or [2-(14)C]propionate. These brain components were also isolated and analysed from rats that had been given [2-(14)C]propionate. The results indicate that, as in rat brain, glucose is by far the best precursor of the free amino acids of sheep brain. 2. Degradation of the glutamate of brain yielded labelling patterns consistent with the proposal that the major route of pyruvate metabolism in brain is via acetyl-CoA, and that the short-chain fatty acids enter the brain without prior metabolism by other tissue and are metabolized in brain via the tricarboxylic acid cycle. 3. When labelled glucose was used as a precursor, glutamate always had a higher specific activity than glutamine; when labelled fatty acids were used, the reverse was true. These findings add support and complexity to the concept of the metabolic; compartmentation' of the free amino acids of brain. 4. The results from experiments with labelled propionate strongly suggest that brain metabolizes propionate via succinate and that this metabolic route may be a limited but important source of dicarboxylic acids in the brain.


1980 ◽  
Vol 29 (2) ◽  
pp. 417-424
Author(s):  
Zvi Bar-Shavit ◽  
Rachel Goldman ◽  
Itzhak Ofek ◽  
Nathan Sharon ◽  
David Mirelman

Recently, it was suggested that a mannose-specific lectin on the bacterial cell surface is responsible for the recognition by phagocytic cells of certain nonopsonized Escherichia coli strains. In this study we assessed the interaction of two strains of E. coli at different phases of growth with a monolayer of mouse peritoneal macrophages and developed a direct method with [ 14 C]mannan to quantitate the bacterial mannose-binding activity. Normal-sized bacteria were obtained from logarithmic and stationary phases of growth. Nonseptated filamentous cells were formed by growing the organisms in the presence of cephalexin or at a restrictive temperature. Attachment to macrophages of all bacterial forms was inhibited by methyl α- d -mannoside and mannan but not by other sugars tested. The attachment of stationary phase and filamentous bacteria to macrophages, as well as their mannose-binding activity, was similar, whereas in the exponential-phase bacteria they were markedly reduced. The results show a linear relation between the two parameters ( R = 0.98, P < 0.001). The internalization of the filamentous cells attached to macrophages during 45 min of incubation was much less efficient (20%) compared to that of exponential-phase, stationary-phase, or antibody-coated filamentous bacteria (90%). The results indicate that the mannose-binding activity of E. coli determines the recognition of the organisms by phagocytes. They further suggest that administration of β-lactam antibiotics may impair elimination of certain pathogenic bacteria by inducing the formation of filaments which are inefficiently internalized by the host's phagocytic cells.


Sign in / Sign up

Export Citation Format

Share Document