scholarly journals Frost heave prediction of chilled pipelines buried in unfrozen soils

1984 ◽  
Vol 21 (1) ◽  
pp. 100-115 ◽  
Author(s):  
J.-M. Konrad ◽  
N. R. Morgenstern

Frost heave is an important consideration in the design of buried chilled pipelines. A procedure for calculating the amount of heave under a chilled gas pipeline is presented based on a finite-difference formulation of the heat and mass transfer in saturated soils. The frost heave of the soil is characterized in terms of the segregation potential concept developed in earlier papers by the authors. Good agreement is found between the predictions of heave obtained with this procedure and that observed in long-term full-scale experiments at a test site in Calgary, Canada. Additional calculations are presented to explore the influence of pipeline temperature, pipe insulation, and ground temperature on frost heave of buried pipelines.


1988 ◽  
Vol 25 (2) ◽  
pp. 307-319 ◽  
Author(s):  
L. E. Carlson ◽  
J. F. (Derick) Nixon

Several frost heave mitigation modes were studied at the Calgary, Canada, chilled pipeline frost heave test facility. These included deeper burial (to increase the pressure on the frost front below the pipe) and replacement of the silty soil around the pipe with gravel for a noninsulated pipe. Frost heave at the deep-burial section and at the gravel section was less than the heave at a control section. Other pipe sections tested the effects of insulation of the pipe on the long-term frost heave, as well as the effects of replacing the silt around an insulated pipe with gravel. Summer thawing of the frost bulb around the insulated pipe results in seasonal thaw settlement of the pipe, thus reducing the long-term pipe heave, at least for the warmer ground temperature environment at the Calgary facility.Thermal simulations of the frost bulb growth and predictions of frost heave using the segregation potential model agree well with the observations.Recent excavation of two frost bulbs in silty soil led to field observations of the interior of the frost bulbs, and subsequent laboratory analysis of frost bulb samples. Ice distribution was logged and photographed following excavation of each frost bulb. Key words: frost heave, pipeline, silt, mitigation, instrumentation, field observations.



1994 ◽  
Vol 31 (2) ◽  
pp. 223-245 ◽  
Author(s):  
J.-M. Konrad

Frost heave in soils is analysed from a fundamental point of view to predict the development of periodic ice lens formation that is observed in frozen soils. A model of simultaneous heat and mass transfer associated with three new concepts is described and was found to exhibit many of the frost heave features observed in laboratory tests. An efficient frost heave parameter termed the segregation potential, SP, is also described and found to be an adequate input to a general formulation of heat and mass transfer for the prediction of frost heave in soils for both laboratory and field conditions. Representative values of SP depend on the stress and thermal histories of the soil deposit. The SP-based approach can be used for solving two-dimensional frost heave problems and yields stress, temperature, and ice-content distributions with time. Key words : frost heave, soils, segregation potential, simulation, thermodynamics.



1982 ◽  
Vol 19 (3) ◽  
pp. 250-259 ◽  
Author(s):  
J.-M. Konrad ◽  
N. R. Morgenstern

Previous studies have demonstrated that, close to steady-state conditions, the ratio of the water intake velocity to the temperature gradient across the frozen fringe, called the segregation potential, is an important property characterizing a freezing soil. Under the more general conditions of transient freezing it is shown that the freezing characteristics of a given soil under zero applied load are defined by the segregation potential, the suction at the frozen–unfrozen interface, and the rate of cooling of the frozen fringe. These parameters form a relationship called the characteristic frost heave surface that can be used to predict mass transfer during the freezing of fine-grained soils. Examples of freezing tests conducted under various conditions are reproduced numerically to illustrate the fundamental character of this surface.



2003 ◽  
Vol 3 (1-2) ◽  
pp. 201-207
Author(s):  
H. Nagaoka ◽  
T. Nakano ◽  
D. Akimoto

The objective of this research is to investigate mass transfer mechanism in biofilms under oscillatory flow conditions. Numerical simulation of turbulence near a biofilm was conducted using the low Reynold’s number k-ɛ turbulence model. Substrate transfer in biofilms under oscillatory flow conditions was assumed to be carried out by turbulent diffusion caused by fluid movement and substrate concentration profile in biofilm was calculated. An experiment was carried out to measure velocity profile near a biofilm under oscillatory flow conditions and the influence of the turbulence on substrate uptake rate by the biofilm was also measured. Measured turbulence was in good agreement with the calculated one and the influence of the turbulence on the substrate uptake rate was well explained by the simulation.



1980 ◽  
Vol 1 (2) ◽  
pp. 145-159
Author(s):  
Edward F. Harris ◽  
Nicholas F. Bellantoni

Archaeologically defined inter-group differences in the Northeast subarea ate assessed with a phenetic analysis of published craniometric information. Spatial distinctions in the material culture are in good agreement with those defined by the cranial metrics. The fundamental dichotomy, between the Ontario Iroquois and the eastern grouping of New York and New England, suggests a long-term dissociation between these two groups relative to their ecologic adaptations, trade relationships, trait-list associations, and natural and cultural barriers to gene flow.



1985 ◽  
Vol 50 (3) ◽  
pp. 745-757 ◽  
Author(s):  
Andreas Zahn ◽  
Lothar Ebner ◽  
Kurt Winkler ◽  
Jan Kratochvíl ◽  
Jindřich Zahradník

The effect of two-phase flow regime on decisive hydrodynamic and mass transfer characteristics of horizontal-tube gas-liquid reactors (pressure drop, liquid holdup, kLaL) was determined in a cocurrent-flow experimental unit of the length 4.15 m and diameter 0.05 m with air-water system. An adjustable-height weir was installed in the separation chamber at the reactor outlet to simulate the effect of internal baffles on reactor hydrodynamics. Flow regime maps were developed in the whole range of experimental gas and liquid flow rates both for the weirless arrangement and for the weir height 0.05 m, the former being in good agreement with flow-pattern boundaries presented by Mandhane. In the whole range of experi-mental conditions pressure drop data could be well correlated as a function of gas and liquid flow rates by an empirical exponential-type relation with specific sets of coefficients obtained for individual flow regimes from experimental data. Good agreement was observed between values of pressure drop obtained for weirless arrangement and data calculated from the Lockhart-Martinelli correlation while the contribution of weir to the overall pressure drop was well described by a relation proposed for the pressure loss in closed-end tubes. In the region of negligible weir influence values of liquid holdup were again succesfully correlated by the Lockhart-Martinelli relation while the dependence of liquid holdup data on gas and liquid flow rates obtained under conditions of significant weir effect (i.e. at low flow rates of both phases) could be well described by an empirical exponential-type relation. Results of preliminary kLaL measurements confirmed the decisive effect of the rate of energy dissipation on the intensity of interfacial mass transfer in gas-liquid dispersions.



Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2452
Author(s):  
Tian Qiao ◽  
Hussein Hoteit ◽  
Marwan Fahs

Geological carbon storage is an effective method capable of reducing carbon dioxide (CO2) emissions at significant scales. Subsurface reservoirs with sealing caprocks can provide long-term containment for the injected fluid. Nevertheless, CO2 leakage is a major concern. The presence of abandoned wells penetrating the reservoir caprock may cause leakage flow-paths for CO2 to the overburden. Assessment of time-varying leaky wells is a need. In this paper, we propose a new semi-analytical approach based on pressure-transient analysis to model the behavior of CO2 leakage and corresponding pressure distribution within the storage site and the overburden. Current methods assume instantaneous leakage of CO2 occurring with injection, which is not realistic. In this work, we employ the superposition in time and space to solve the diffusivity equation in 2D radial flow to approximate the transient pressure in the reservoirs. Fluid and rock compressibilities are taken into consideration, which allow calculating the breakthrough time and the leakage rate of CO2 to the overburden accurately. We use numerical simulations to verify the proposed time-dependent semi-analytical solution. The results show good agreement in both pressure and leakage rates. Sensitivity analysis is then conducted to assess different CO2 leakage scenarios to the overburden. The developed semi-analytical solution provides a new simple and practical approach to assess the potential of CO2 leakage outside the storage site. This approach is an alternative to numerical methods when detailed simulations are not feasible. Furthermore, the proposed solution can also be used to verify numerical codes, which often exhibit numerical artifacts.



Author(s):  
Jesús F. Águila ◽  
Vanessa Montoya ◽  
Javier Samper ◽  
Luis Montenegro ◽  
Georg Kosakowski ◽  
...  

AbstractSophisticated modeling of the migration of sorbing radionuclides in compacted claystones is needed for supporting the safety analysis of deep geological repositories for radioactive waste, which requires robust modeling tools/codes. Here, a benchmark related to a long term laboratory scale diffusion experiment of cesium, a moderately sorbing radionuclide, through Opalinus clay is presented. The benchmark was performed with the following codes: CORE2DV5, Flotran, COMSOL Multiphysics, OpenGeoSys-GEM, MCOTAC and PHREEQC v.3. The migration setup was solved with two different conceptual models, i) a single-species model by using a look-up table for a cesium sorption isotherm and ii) a multi-species diffusion model including a complex mechanistic cesium sorption model. The calculations were performed for three different cesium boundary concentrations (10−3, 10−5, 10−7 mol / L) to investigate the models/codes capabilities taking into account the nonlinear sorption behavior of cesium. Generally, good agreement for both single- and multi-species benchmark concepts could be achieved, however, some discrepancies have been identified, especially near the boundaries, where code specific spatial (and time) discretization had to be improved to achieve better agreement at the expense of longer computation times. In addition, the benchmark exercise yielded useful information on code performance, setup options, input and output data management, and post processing options. Finally, the comparison of single-species and multi-species model concepts showed that the single-species approach yielded generally earlier breakthrough, because this approach accounts neither for cation exchange of Cs+ with K+ and Na+, nor K+ and Na+ diffusion in the pore water.



Author(s):  
Brian H. Walsh ◽  
Chelsea Munster ◽  
Hoda El-Shibiny ◽  
Edward Yang ◽  
Terrie E. Inder ◽  
...  

Abstract Objective The NICHD and SIBEN assessments are adapted from the Sarnat grade, and used to determine severity of neonatal encephalopathy (NE). We compare NICHD and SIBEN methods, and their ability to define a minimum threshold associated with significant cerebral injury. Study design Between 2016 and 2019, 145 infants with NE (77-mild; 65-moderate; 3-severe) were included. NICHD and SIBEN grade and numerical scores were assigned. Kappa scores described agreement between methods, and ROC curves their ability to predict MR injury. Results Good agreement existed between grading systems (K = 0.86). SIBEN defined more infants as moderate, and less as mild, than NICHD (p < 0.001). Both numerical scores were superior to standard grades in predicting MR injury. Conclusion Despite good agreement between methods, SIBEN defines more infants as moderate NE. Both numerical scores were superior to standard grade, and comparable to each other, in defining a minimum threshold for cerebral injury. Further assessment contrasting their predictive ability for long-term outcome is required.



Genetics ◽  
2001 ◽  
Vol 158 (2) ◽  
pp. 681-693 ◽  
Author(s):  
David Chavarrías ◽  
Carlos López-Fanjul ◽  
Aurora García-Dorado

Abstract The effect of 250 generations of mutation accumulation (MA) on the second chromosome competitive viability of Drosophila melanogaster was analyzed both in homozygous and heterozygous conditions. We used full-sib MA lines, where selection hampers the accumulation of severely deleterious mutations but is ineffective against mildly deleterious ones. A large control population was simultaneously evaluated. Competitive viability scores, unaffected by the expression of mutations in heterozygosis, were obtained relative to a Cy/L2 genotype. The rate of decline in mean ΔM ≈ 0.1% was small. However, that of increase in variance ΔV ≈ 0.08 × 10-3 was similar to the values obtained in previous experiments when severely deleterious mutations were excluded. The corresponding estimates of the mutation rate λ ≥ 0.01 and the average effect of mutations E(s) ≤ 0.08 are in good agreement with Bateman-Mukai and minimum distance estimates for noncompetitive viability obtained from the same MA lines after 105 generations. Thus, competitive and noncompetitive viability show similar mutational properties. The regression estimate of the degree of dominance for mild-to-moderate deleterious mutations was ∼0.3, suggesting that the pertinent value for new unselected mutations should be somewhat smaller.



Sign in / Sign up

Export Citation Format

Share Document