scholarly journals Changes in community structure of ectomycorrhizal fungi associated with Pinus montezumae across a volcanic soil chronosequence at Sierra Chichinautzin, Mexico

2010 ◽  
Vol 40 (6) ◽  
pp. 1165-1174 ◽  
Author(s):  
Frédérique Reverchon ◽  
María del Pilar Ortega-Larrocea ◽  
Jesús Pérez-Moreno ◽  
Víctor Manuel Peña-Ramírez ◽  
Christina Siebe

Ectomycorrhizal (ECM) communities of Pinus montezumae Lamb. var. montezumae were studied across a volcanic soil chronosequence at Sierra del Chichinautzin, Mexico, to investigate differences in community structure at sites with different soil quality. Study sites were located on volcanic soils of different ages. Both aboveground and belowground fungal communities were compared for 3 years. Species abundance, richness, and diversity were compared among sites. Significant differences were found among the three sites for sporocarp abundance and biomass but not for total ECM root tips. The more diverse sporocarp community was found at the youngest, less fertile site. Dominant species at the sporocarp and ECM morphotype levels differed across the chronosequence. The largest proportion of sporocarp species was site-exclusive, which suggests that aboveground communities depend upon soil conditions. Contrarily, 85% of ECM morphotypes were present at least at two sites. The poor correspondence between the aboveground and belowground views of the ECM fungal community may be due to differences in sampling methodology and level of identification. Inocybe and Laccaria species were abundant fruiters at all sites, and as multisite fungi, they may be tested for inoculum efficiency to be used in reforestation programs in the surroundings of Mexico City.


2001 ◽  
Vol 79 (10) ◽  
pp. 1134-1151 ◽  
Author(s):  
Martina Peter ◽  
François Ayer ◽  
Simon Egli ◽  
Rosmarie Honegger

The structure of ectomycorrhizal communities was assessed above- and below-ground at three different sites in Switzerland that are dominated by Norway spruce (Picea abies (L.) Karst.). We applied three different approaches to record the ectomycorrhizal species compositions and their spatial structures and compared them among each other. Sporocarp inventories were carried out weekly for 3 years. Belowground, molecular, and morphological analyses of ectomycorrhizal roots were performed. In the 3 years of sporocarp survey, a total of 128 ectomycorrhizal species was observed. Most abundant in number of species were the genera Cortinarius and Russula in all three sites. Using polymerase chain reaction, only 22% of the ectomycorrhizal species observed in sporocarp surveys were detected in mycorrhizas. Species that produce no or inconspicuous sporocarps were most abundant on the root system in all three study sites. The resolution was clearly inferior in morphotype compared with molecular analyses. Spatial analyses of the ectomycorrhizal species composition among subplots revealed high variability within sites. Within sites, spatial structure with positive autocorrelation was observed based on sporocarp data as well as molecular analyses of root tips at the site where the number of analysed mycorrhizas was sufficiently high. No spatial structure could be detected on this scale by morphotype analyses because of the high variability among soil cores. All three methods showed the same site to be separated from the other two based on ectomycorrhizal species compositions. Stand ages and their histories are discussed as possible explanations for these findings.Key words: community structure, ectomycorrhiza, macrofungi, morphotype, ITS RFLP, Picea abies.



2021 ◽  
Vol 14 (2) ◽  

Small mammal communities that occur in habitats on volcanic soil substrates have been extensively studied on Luzon Island, but those that occur in forest over limestone are poorly known and have not been directly compared to those over volcanic soils. We conducted field surveys of small mammals in forest over limestone from ca. 100 m to 590 m elevation in the vicinity of Callao Cave, and in adjacent lowland dipterocarp forest over volcanic soil from 490 m to 900 m, near the location of prior surveys from 1300 m to1550 m on Mt. Cetaceo, an extinct volcanic peak in the northern Sierra Madre range. Despite moderately heavy disturbance to the habitats over karst (limestone) and moderate disturbance to forest over volcanic soils, we found native small mammals overall at levels of species richness and abundance similar to what we have documented elsewhere on Luzon over the same elevational range. Non-native mammals were present at all localities in the karstic habitat but were absent in all types of forest over volcanic soils, even in areas recovering from prior disturbance. Although non-natives were moderately common in karstic areas, they rarely were more common than native species, and non-native species were no more successful at invading the disturbed karstic habitat than the native species were at persisting there. The most abundant small mammal in dipterocarp forest over volcanic soil (Apomys sierra) was absent in karstic localities, despite occurring in adjacent areas at overlapping elevation. Overall, the difference between small mammals in karst and lowland dipterocarp forest was mainly due to species composition rather than total abundance. Comparisons with data from a prior study on the upper slopes of Mt. Cetaceo showed that total native species abundance was highest in montane and mossy forest, typically about three times higher than in lowland dipterocarp forest. We confirmed the current presence of one species, Apomys microdon, reported as a fossil from Callao Cave, but the apparent absence of one other, Batomys sp.; both were from deposits dated as ca. 65,000 BP. We also summarize information about large mammals in the study areas. Further study of mammals in the distinctive forest over limestone is clearly needed. KEYWORDS: biodiversity, biogeography, Cagayan Valley, disturbed forest, elevation, fossils, Muridae, Sierra Madre, Soricidae



2010 ◽  
Vol 60 (2) ◽  
pp. 217-226 ◽  
Author(s):  
Frédérique Reverchon ◽  
Pilar María del Ortega-Larrocea ◽  
Jesús Pérez-Moreno


2009 ◽  
Vol 75 (24) ◽  
pp. 7639-7648 ◽  
Author(s):  
David J. Burke ◽  
Juan C. López-Gutiérrez ◽  
Kurt A. Smemo ◽  
Charlotte R. Chan

ABSTRACT Although the level of diversity of root-associated fungi can be quite high, the effect of plant distribution and soil environment on root-associated fungal communities at fine spatial scales has received little attention. Here, we examine how soil environment and plant distribution affect the occurrence, diversity, and community structure of root-associated fungi at local patch scales within a mature forest. We used terminal restriction fragment length polymorphism and sequence analysis to detect 63 fungal species representing 28 different genera colonizing tree root tips. At least 32 species matched previously identified mycorrhizal fungi, with the remaining fungi including both saprotrophic and parasitic species. Root fungal communities were significantly different between June and September, suggesting a rapid temporal change in root fungal communities. Plant distribution affected root fungal communities, with some root fungi positively correlated with tree diameter and herbaceous-plant coverage. Some aspects of the soil environment were correlated with root fungal community structure, with the abundance of some root fungi positively correlated with soil pH and moisture content in June and with soil phosphorous (P) in September. Fungal distribution and community structure may be governed by plant-soil interactions at fine spatial scales within a mature forest. Soil P may play a role in structuring root fungal communities at certain times of the year.



Agriculture ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1113
Author(s):  
Xiaolong Lin ◽  
Zongmu Yao ◽  
Xinguang Wang ◽  
Shangqi Xu ◽  
Chunjie Tian ◽  
...  

Rice is a staple food for the world’s population. However, the straw produced by rice cultivation is not used sufficiently. Returning rice straw to the field is an effective way to help reduce labor and protect the soil. This study focused on the effect of water-covered depth with the freeze–thaw cycle on rice straw decomposition and the soil fungal community structure in a field in Northeast China. The field and controlled experiments were designed, and the fungal ITS1 region was tested by high-throughput sequencing for analyzing the fungal communities in this study. The results showed that water coverage with the freeze–thaw cycle promoted the decomposition of rice straw and influenced the fungal community structure; by analyzing the network of the fungal communities, it was found that the potential keystone taxa were Penicillium, Talaromyces, Fusarium, and Aspergillus in straw decomposition; and the strains with high beta-glucosidase, carboxymethyl cellulase, laccase, lignin peroxidase, and manganese peroxidase could also be isolated in the treated experiment. Furthermore, plant pathogenic fungi were found to decrease in the water-covered treatment. We hope that our results can help in rice production and straw return in practice.



2019 ◽  
Author(s):  
Di Liu ◽  
Qinglin Chen ◽  
Pangzhen Zhang ◽  
Deli Chen ◽  
Kate S. Howell

AbstractThe flavours of foods and beverages are formed by the agricultural environment where the plants are grown. In the case of wine, the location and environmental features of the vineyard site imprint the wine with distinctive aromas and flavours. Microbial growth and metabolism play an integral role in wine production from the vineyard to the winery, by influencing grapevine health, wine fermentation, and the flavour, aroma and quality of finished wines. The mechanism by which microbial distribution patterns drive wine metabolites is unclear and while flavour has been correlated with bacterial composition for red wines, bacterial activity provides a minor biochemical conversion in wine fermentation. Here, we collected samples across six distinct winegrowing areas in southern Australia to investigate regional distribution patterns of both fungi and bacteria and how this corresponds with wine aroma compounds. Results show that soil and must microbiota distinguish winegrowing regions and are related to wine chemical profiles. We found a strong relationship between microbial and wine metabolic profiles, and this relationship was maintained despite differing abiotic drivers (soil properties and weather/ climatic measures). Notably, fungal communities played the principal role in shaping wine aroma profiles and regional distinctiveness. We found that the soil microbiome is a potential source of grape- and must-associated fungi, and therefore the weather and soil conditions could influence the wine characteristics via shaping the soil fungal community compositions. Our study describes a comprehensive scenario of wine microbial biogeography in which microbial diversity responds to surrounding environments and ultimately sculpts wine aromatic characteristics. These findings provide perspectives for thoughtful human practices to optimise food and beverage flavour and composition through understanding of fungal activity and abundance.



Author(s):  
Adrian Valdez ◽  
Sergio Covarrubias

The Andes range in Ecuador presents high biodiversity and characteristic altitudinal gradients, which are frequently threatened by deforestation and farming. In particular, forest have developed in the high inter-Andean alley on volcanic soils forming a unique ecoregion. Little is known on the fungal biodiversity of soil in such high Andean gallery forest submitted to strong degradation pressures. Therefore, in this study we evaluated wether the soil mycobiome was associated with altitudinal gradients during the dry season. Three representative locations were selected based on altitude: A (3,309 meters above the sea level, masl), B (3,809 masl) and C (4,409 masl). High performance sequencing (NGS) of the ITS region of ribosomal DNA genes with Illumina technology was used to explore the fungal taxonomic composition in the soil samples. Our results showed changes in the structure of fungal communities in the different locations, related to the relative abundance of Amplicon Sequence Variants (ASV). Higher fungal diversity was related with the altitudinal gradient with average taxa ranging from 675, 626 and 556 ASVs, respectively from location A to C. The results highlight the complexity and diversity of fungal communities in high Andean forest and the need to protect these unique mycobiomes. The findings in this ecosystem of Ecuador will improve our understanding of distribution, diversity, ecology, and biological perspectives for the restoration of terrestrial microbiomes.



2020 ◽  
Author(s):  
Chuanbo Zhang ◽  
Chao-Hui Ren ◽  
Yan-Li Wang ◽  
Qi-Qi Wang ◽  
Yun-Sheng Wang ◽  
...  

Abstract Background The fungal communities inhabiting natural Ophiocordyceps sinensis play critical ecological roles in alpine meadow ecosystem, contribute to infect host insect, influence the occurrence of O. sinensis, and are repertoire of potential novel metabolites discovery. However, a comprehensive understanding of fungal communities of O. sinensis remain elusive. Therefore, the present study aimed to unravel fungal communities of natural O. sinensis using combination of high-throughput sequencing and culture-dependent approach. Results A total of 280,519 high-quality sequences, belonging to 5 fungal phyla, 15 classes, 41 orders, 79 families, 112 genera, and 352 putative operational taxonomic units (OTUs) were obtained from natural O. sinensis using high-throughput sequencing. Among of which, 43 genera were identified in external mycelial cortices (EMC), Ophiocordyceps, Sebacinia, Archaeorhizomyces were predominant genera with the abundance of 95.86%, 1.14%, 0.85%, respectively. Total 66 genera were identified from soil microhabitat, Inocybe, Archaeorhizomyces, Unclassified Thelephoraceae, Tomentella, Thelephora, Sebacina, Unclassified Ascomycota, Unclassified Fungi were predominant genera with an average abundance of 53.32%, 8.69%, 8.12%, 8.12%, 7.21%, 4.6%, 3.08% and 3.05%, respectively. The fungal communities in external mycelial cortices (EMC) were significantly distinct from the soil microhabitat (Soil). Meanwhile, seven culture media that benefit for the growth of O. sinensis were used to isolate culturable fungi at 16 °C, resulted in 77 fungal strains isolated for rDNA ITS sequence analysis, belonging to 33 genera, including Ophiocordyceps, Trichoderma, Cytospora, Truncatella, Dactylonectria, Isaria, Cephalosporium, Fusarium, Cosmospora, Paecilomyces, etc.. Among all culturable fungi, Mortierella and Trichoderma were predominant genera of total isolates. Conclusions The significantly distinction and overlap in fungal community structure between two approaches highlight that integration of approaches would generate more information than either of them. Our finding is the first investigation of fungal community structure of natural O. sinensis by two approachs, provide new insight into O. sinensis associated fungi, and support that microbiota of O. sinensis is an untapped source for novel bioactive metabolites discovery.



2021 ◽  
Author(s):  
Tong Liu ◽  
Feng Xue

Abstract This study is designed to understand the community structure and diversity of fungi in the rhizosphere soil of grape. As the sample for this study, the rhizosphere soil of Crimson seedless grape with different planting years was collected from Shihezi in Xinjiang to carry out high-throughput sequencing, by which the complete sequence of soil fungi DNA was identified, and accordingly, the richness and diversity index of fungi were determined. The results showed that the dominant phyla of fungi in the grape rhizosphere soil with different planting years were Ascomycota and Basidiomycota, and the dominant classes of fungi were Sordariomycetes and Dothideomycetes. Soil organic matter, total potassium, total nitrogen and available phosphorus were the main soil fertility factors affecting the abundance and diversity of soil fungal communities, among which soil organic matter had the most significant influence. In addition, the fungal diversity and richness were highest in the middle layer (20-35 cm) of the grape rhizosphere soil with 12 planting years and lowest in the lower layer (35-50 cm) of the grape rhizosphere soil with 5 planting years. Linear discriminant analysis suggested that there were more biomarkers in the vineyard rhizosphere soil with 10 planting years, which meant there were more fungal communities with significant difference in the soil, especially in the middle layer (20-35). The results of this study can provide data reference and theoretical basis for improving vineyard soil quality, evaluating soil microecological effects and improving ecological environment of vineyard soil.



Sign in / Sign up

Export Citation Format

Share Document