Root and shoot biomass and mycorrhizal development of white spruce seedlings naturally regenerating in interior Alaskan floodplain communities

1984 ◽  
Vol 14 (4) ◽  
pp. 554-558 ◽  
Author(s):  
M. E. Krasny ◽  
K. A. Vogt ◽  
J. C. Zasada

Root and shoot biomass and mycorrhizal development were examined for white spruce (Piceaglauca (Moench) Voss) seedlings naturally regenerating in four floodplain communities in the boreal forest. Mean seedling biomass was highest in the open community and lowest in the spruce community. Seedlings growing in the open community had higher root:shoot ratios (0.50) compared with seedlings growing in the willow (0.34), alder (0.20), and spruce (0.24) communities. Essentially all short roots of spruce seedlings growing in all four communities were infected by mycorrhizal fungi throughout the growing season.


Forests ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 943
Author(s):  
Katri Nissinen ◽  
Virpi Virjamo ◽  
Antti Kilpeläinen ◽  
Veli-Pekka Ikonen ◽  
Laura Pikkarainen ◽  
...  

We studied the growth responses of boreal Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies L. Karst.) and silver birch (Betula pendula Roth) seedlings to simulated climate warming of an average of 1.3 °C over the growing season in a controlled field experiment in central Finland. We had six replicate plots for elevated and ambient temperature for each tree species. The warming treatment lasted for the conifers for three growing seasons and for the birch two growing seasons. We measured the height and diameter growth of all the seedlings weekly during the growing season. The shoot and root biomass and their ratios were measured annually in one-third of seedlings harvested from each plot in autumn. After two growing seasons, the height, diameter and shoot biomass were 45%, 19% and 41% larger in silver birch seedlings under the warming treatment, but the root biomass was clearly less affected. After three growing seasons, the height, diameter, shoot and root biomass were under a warming treatment 39, 47, 189 and 113% greater in Scots pine, but the root:shoot ratio 29% lower, respectively. The corresponding responses of Norway spruce to warming were clearly smaller (e.g., shoot biomass 46% higher under a warming treatment). As a comparison, the relative response of height growth in silver birch was after two growing seasons equal to that measured in Scots pine after three growing seasons. Based on our findings, especially silver birch seedlings, but also Scots pine seedlings benefitted from warming, which should be taken into account in forest regeneration in the future.



2001 ◽  
Vol 31 (2) ◽  
pp. 208-223 ◽  
Author(s):  
Christopher Potter ◽  
Jill Bubier ◽  
Patrick Crill ◽  
Peter Lafleur

Predicted daily fluxes from an ecosystem model for water, carbon dioxide, and methane were compared with 1994 and 1996 Boreal Ecosystem–Atmosphere Study (BOREAS) field measurements at sites dominated by old black spruce (Picea mariana (Mill.) BSP) (OBS) and boreal fen vegetation near Thompson, Man. Model settings for simulating daily changes in water table depth (WTD) for both sites were designed to match observed water levels, including predictions for two microtopographic positions (hollow and hummock) within the fen study area. Water run-on to the soil profile from neighboring microtopographic units was calibrated on the basis of daily snowmelt and rainfall inputs to reproduce BOREAS site measurements for timing and magnitude of maximum daily WTD for the growing season. Model predictions for daily evapotranspiration rates closely track measured fluxes for stand water loss in patterns consistent with strong controls over latent heat fluxes by soil temperature during nongrowing season months and by variability in relative humidity and air temperature during the growing season. Predicted annual net primary production (NPP) for the OBS site was 158 g C·m–2 during 1994 and 135 g C·m–2 during 1996, with contributions of 75% from overstory canopy production and 25% from ground cover production. Annual NPP for the wetter fen site was 250 g C·m–2 during 1994 and 270 g C·m–2 during 1996. Predicted seasonal patterns for soil CO2 fluxes and net ecosystem production of carbon both match daily average estimates at the two sites. Model results for methane flux, which also closely match average measured flux levels of –0.5 mg CH4·m–2·day–1 for OBS and 2.8 mg CH4·m–2·day–1 for fen sites, suggest that spruce areas are net annual sinks of about –0.12 g CH4·m–2, whereas fen areas generate net annual emissions on the order of 0.3–0.85 g CH4·m–2, depending mainly on seasonal WTD and microtopographic position. Fen hollow areas are predicted to emit almost three times more methane during a given year than fen hummock areas. The validated model is structured for extrapolation to regional simulations of interannual trace gas fluxes over the entire North America boreal forest, with integration of satellite data to characterize properties of the land surface.



1992 ◽  
Vol 70 (8) ◽  
pp. 1596-1602 ◽  
Author(s):  
S. P. Bentivenga ◽  
B. A. D. Hetrick

Previous research on North American tallgrass prairie grasses has shown that warm-season grasses rely heavily on vesicular–arbuscular mycorrhizal symbiosis, while cool-season grasses are less dependent on the symbiosis (i.e., receive less benefit). This led to the hypothesis that cool-season grasses are less dependent on the symbiosis, because the growth of these plants occurs when mycorrhizal fungi are inactive. Field studies were performed to assess the effect of phenology of cool- and warm-season grasses on mycorrhizal fungal activity and fungal species composition. Mycorrhizal fungal activity in field samples was assessed using the vital stain nitro blue tetrazolium in addition to traditional staining techniques. Mycorrhizal activity was greater in cool-season grasses than in warm-season grasses early (April and May) and late (December) in the growing season, while mycorrhizal activity in roots of the warm-season grasses was greater (compared with cool-season grasses) in midseason (July and August). Active mycorrhizal colonization was relatively high in both groups of grasses late in the growing season, suggesting that mycorrhizal fungi may proliferate internally or may be parasitic at this time. Total Glomales sporulation was generally greater in the rhizosphere of cool-season grasses in June and in the rhizosphere of the warm-season grasses in October. A growth chamber experiment was conducted to examine the effect of temperature on mycorrhizal dependence of cool- and warm-season grasses. For both groups of grasses, mycorrhizal dependence was greatest at the temperature that favored growth of the host. The results suggest that mycorrhizal fungi are active in roots when cool-season grasses are growing and that cool-season grasses may receive benefit from the symbiosis under relatively cool temperature regimes. Key words: cool-season grasses, tallgrass prairie, vesicular–arbuscular mycorrhizae, warm-season grasses.



2012 ◽  
Vol 12 (24) ◽  
pp. 12165-12182 ◽  
Author(s):  
Ü. Rannik ◽  
N. Altimir ◽  
I. Mammarella ◽  
J. Bäck ◽  
J. Rinne ◽  
...  

Abstract. This study scrutinizes a decade-long series of ozone deposition measurements in a boreal forest in search for the signature and relevance of the different deposition processes. The canopy-level ozone flux measurements were analysed for deposition characteristics and partitioning into stomatal and non-stomatal fractions, with the main focus on growing season day-time data. Ten years of measurements enabled the analysis of ozone deposition variation at different time-scales, including daily to inter-annual variation as well as the dependence on environmental variables and concentration of biogenic volatile organic compounds (BVOC-s). Stomatal deposition was estimated by using multi-layer canopy dispersion and optimal stomatal control modelling from simultaneous carbon dioxide and water vapour flux measurements, non-stomatal was inferred as residual. Also, utilising the big-leaf assumption stomatal conductance was inferred from water vapour fluxes for dry canopy conditions. The total ozone deposition was highest during the peak growing season (4 mm s−1) and lowest during winter dormancy (1 mm s−1). During the course of the growing season the fraction of the non-stomatal deposition of ozone was determined to vary from 26 to 44% during day time, increasing from the start of the season until the end of the growing season. By using multi-variate analysis it was determined that day-time total ozone deposition was mainly driven by photosynthetic capacity of the canopy, vapour pressure deficit (VPD), photosynthetically active radiation and monoterpene concentration. The multi-variate linear model explained the high portion of ozone deposition variance on daily average level (R2 = 0.79). The explanatory power of the multi-variate model for ozone non-stomatal deposition was much lower (R2 = 0.38). The set of common environmental variables and terpene concentrations used in multivariate analysis were able to predict the observed average seasonal variation in total and non-stomatal deposition but failed to explain the inter-annual differences, suggesting that some still unknown mechanisms might be involved in determining the inter-annual variability. Model calculation was performed to evaluate the potential sink strength of the chemical reactions of ozone with sesquiterpenes in the canopy air space, which revealed that sesquiterpenes in typical amounts at the site were unlikely to cause significant ozone loss in canopy air space. The results clearly showed the importance of several non-stomatal removal mechanisms. Unknown chemical compounds or processes correlating with monoterpene concentrations, including potentially reactions at the surfaces, contribute to non-stomatal sink term.



1992 ◽  
Vol 43 (5) ◽  
pp. 1157 ◽  
Author(s):  
WM Blacklow ◽  
PC Pheloung

Chlorsulfuron and triasulfuron were applied to the surface of acidic, sandy loam at a low rainfall site in 1989 (129 mm June-October) and a high rainfall site in 1990 (217 mm July-August). Four environments were obtained by early and late application times and lime addition in 1989 and by a wetter site in 1990. The pH of the surface 10 cm was 4.9 in 1989, 5.8 in 1990 and 6.5 after the addition of limestone in 1989. The plots were left fallow or sown, prior to herbicide applications, to wheat (cv. Kulin). Hourly averages of rainfall, soil and air temperature were recorded. The temperature range was 2.7�C to 23.2�C. The soil profiles were sampled on 5 to 7 occasions and herbicide residues were determined by a laboratory bioassay (sensitivity >0.4 8g kg-1 soil). Chlorsulfuron and triasulfuron were detected to 300 mm in the wetter environment but neither herbicide was as mobile in the profile as water. More herbicide moved to the lower layers of the profile in the higher pH environment. The half-lives for residues ranged from 12 to 28 days. Shoot biomass of wheat seedlings was suppressed by both herbicides but grain yields were unaffected. The residues failed to prevent reinvasion of the wheat plots by weeds, notably Arctotheca calendula.



Horticulturae ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 178
Author(s):  
Matej Vosnjak ◽  
Matevz Likar ◽  
Gregor Osterc

The influence of mycorrhizal inoculum in combination with different phosphorus treatments on growth and flowering parameters of Ajania (Ajania pacifica (Nakai) Bremer et Humphries) plants was investigated in two growing seasons (2015 and 2016). Plants of the cultivar ‘Silver and Gold’ were transplanted into pots either with added mycorrhizal inoculum or without inoculum and assigned to four phosphorus treatments. Mycorrhizal colonization was assessed by evaluating the frequency of colonization, intensity of colonization and density of fungal structures (arbuscules, vesicles, coils and microsclerotia) in the roots. During the growing season, the content of plant available phosphorus in the soil was analyzed, and shoot length, number of shoots, number of inflorescences, number of flowers and flowering time were evaluated. Inoculated Ajania plants were successfully colonized with arbuscular mycorrhizal fungi and dark septate endophytic fungi. In the root segments, hyphae were mainly observed, as well as vesicles, coils, arbuscules and microsclerotia, but in lower density. The density of fungal structures did not differ among phosphorus treatments, but did differ between years, with a higher density of fungal structures in 2016. Mycorrhizal plants developed higher number of shoots in 2016, higher number of inflorescences, higher number of flowers, and they flowered longer compared to uninoculated plants.



Author(s):  
S. Acikbas ◽  
M.A. Ozyazici ◽  
H. Bektas

Background: Plants face different abiotic stresses such as salinity that affect their normal development, growth and survival. Forage pea is an important legume crop for herbage production in ruminants. Its agronomy requires high levels of irrigation and fertilization. This study aimed to evaluate the effect of salinity on seedling root system development in forage pea under semi-hydroponics conditions.Methods: Different treatment of NaCl doses (0, 50, 100, 150, 200, 250 and 300 mM) on root architecture was investigated in two different forage pea cultivars (Livioletta and Ulubatlý) with contrasting root structures under controlled conditions. The experimental design was completely randomized design with three replications and nine plants per replication.Result: Salinity affects root and shoot development differently on these cultivars. Despite the salinity, Livioletta produced more shoot (0.71 g) and root biomass (0.30 g) compared to Ulubatlý (0.52 g and 0.25 g for Root and Shoot biomass, respectively) at 150 mM and all other salinity levels. Livioletta developed a better root system and tolerated salt to a higher dose than Ulubatlý. Understanding root system responses of forage pea cultivars may allow breeding and selecting salinity tolerant cultivars with better rooting potential.



2021 ◽  
Author(s):  
Erin Nicholls ◽  
Gordon Drewitt ◽  
Sean Carey

<p>As a result of altitude and latitude amplified impacts of climate change, widespread alterations in vegetation composition, density and distribution are widely observed across the circumpolar north. The influence of this vegetation change on the timing and magnitude of hydrological fluxes is uncertain, and is confounded by changes driven by increased temperatures and altered precipitation (P) regimes. In northern alpine catchments, quantification of total evapotranspiration (ET) and evaporative partitioning across a range of elevation-based ecosystems is critical for predicting water yield under change, yet remains challenging due to coupled environmental and phenological controls on transpiration (T). In this work, we analyze 6 years of surface energy balance, ET, and sap flow data at three sites along an elevational gradient in a subarctic, alpine catchment near Whitehorse, Yukon Territory, Canada. These sites provide a space-for-time evaluation of vegetation shifts and include: 1) a low-elevation boreal white spruce forest (~20 m), 2) a mid-elevation subalpine taiga comprised of tall willow (Salix) and birch (Betula) shrubs (~1-3 m) and 3) a high-elevation subalpine taiga with shorter shrub cover (< 0.75 m) and moss, lichen, and bare rock. Specific objectives are to 1) evaluate interannual ET dynamics within and among sites under different precipitation regimes , and 2) assess the influence of vegetation type and structure, phenology, soil and meteorological controls on ET dynamics and partitioning.  Eddy covariance and sap flow sensors operated year-round at the forest and during the growing season at the mid-elevation site on both willow and birch shrubs for two years. Growing season ET decreased and interannual variability increased with elevation, with June to August ET totals of 250 (±3) mm at Forest, 192 (±9) mm at the tall shrub site, and 180 (± 26) mm at the short shrub site. Comparatively, AET:P ratios were the highest and most variable at the forest (2.4 ± 0.3) and similar at the tall and short shrub (1.2 ± 0.1).  At the forest, net radiation was the primary control on ET, and 55% was direct T from white spruce. At the shrub sites, monthly ET rates were similar except during the peak growing season when T at the tall shrub site comprised 89% of ET, resulting in greater total water loss. Soil moisture strongly influenced T at the forest, suggesting the potential for moisture stress, yet not at the shrub sites where there was no moisture limitation. Results indicate that elevation advances in treeline will increase overall ET and lower interannual variability; yet the large water deficit during summer implies a strong reliance on early spring snowmelt recharge to sustain soil moisture. Changes in shrub height and density will increase ET primarily during the mid-growing season. This work supports the assertion that predicted changes in vegetation type and structure will have a considerable impact on water partitioning in northern regions, and will also vary in a multifaceted way in response to changing temperature and P regimes.  </p>



Author(s):  
Andrei Lapenis ◽  
George Robinson ◽  
Gregory B. Lawrence

Here we investigate the possible<sup></sup> future response of white spruce (Picea glauca) to a warmer climate by studying trees planted 90 years ago near the southern limit of their climate tolerance in central New York, 300 km south of the boreal forest where this species is prevalent. We employed high-frequency recording dendrometers to determine radial growth phenology of six mature white spruce trees during 2013-2017. Results demonstrate significant reductions in the length of radial growth periods inversely proportional to the number of hot days with air temperature exceeding 30 oC. During years with very hot summers, the start of radial growth began about 3 days earlier than the 2013-2017 average. However, in those same years the end of radial growth was also about 17 days earlier resulting in a shorter (70 versus 100 day), radial growth season. Abundant (350-500 mm) summer precipitation, which resulted in soil moisture values of 20-30% allowed us to dismiss drought as a factor. Instead, a likely cause of reduced radial growth was mean temperature that exceeded daily average of 30<sup> o</sup>C that lead to photoinhibition.



2021 ◽  
Author(s):  
Xuhui Zhou ◽  
Lingyan Zhou ◽  
Yanghui He ◽  
Yuling Fu ◽  
Zhenggang Du ◽  
...  

Abstract Biomass allocation in plants is fundamental for understanding and predicting terrestrial carbon storage. Recent studies suggest that climate warming can differentially affect root and shoot biomass, and subsequently alter root: shoot ratio. However, warming effects on root: shoot ratio and their underlying drivers at a global scale remain unclear. Using a global synthesis of >300 studies, we here show that warming significantly increases biomass allocation to roots (by 13.1%), and two factors drive this response: mean annual precipitation of the site, and the type of mycorrhizal fungi associated with a plant. Warming-induced allocation to roots is greater in relatively drier habitats compared to shoots (by 15.1%), but lower in wetter sites (by 4.9%), especially for plants associated with arbuscular mycorrhizal fungi compared to ectomycorrhizal fungi. Root-biomass responses to warming predominantly determine the biomass allocation in terrestrial plants suggesting that warming can reinforce the importance of belowground resource uptake. Our study highlights that the wetness or dryness of a site and plants’ mycorrhizal associations strongly regulate terrestrial carbon cycle by altering biomass allocation strategies in a warmer world.



Sign in / Sign up

Export Citation Format

Share Document