Interaction of nutrient-loaded black spruce seedlings with neighbouring vegetation in greenhouse environments
The interaction of newly planted, nutrient-loaded black spruce (Piceamariana (Mill.) B.S.P.) seedlings with naturally occurring vegetation was investigated for one growing season under greenhouse conditions using bioassays retrieved from a boreal mixedwood site. Nutrient-loaded seedlings were similar in height and biomass to conventionally fertilized seedlings at planting, but contained 43, 76, and 33% more tissue N, P, and K content due to higher nursery fertilization, which induced luxury consumption. Nutrient-loaded seedlings outperformed conventionally fertilized seedlings in respective height and biomass growth by 35 and 28% in herbicide-treated plots, and by 44 and 37% in untreated plots, resulting in a 27% reduction in neighbouring vegetation biomass by the end of the season. The loading treatments stimulated nutrient uptake after planting, although the depletion of preplant nutrient reserves was greater. A significant negative correlation was observed between tree and weed biomass accumulation. Slope differences indicated that loaded trees were less sensitive to neighbouring vegetation than conventionally fertilized trees. The enhanced competitive ability of loaded seedlings against naturally occurring vegetation was probably due to the translocation of more nutrients to actively growing parts from reserves built up during the nursery preconditioning phase.