Stress- and cold-induced adrenocortical responses in repetitively immobilized or cold-acclimated rats

1987 ◽  
Vol 65 (7) ◽  
pp. 1448-1451 ◽  
Author(s):  
Takehiro Yahata ◽  
Kazuhiko Murazumi ◽  
Akihiro Kuroshima

To evaluate the role of adrenocortical hormones in stress- or cold-induced nonshivering thermogenesis, plasma corticosterone (CS) and deoxycorticosterone (DOCS) were measured with the aid of HPLC under various conditions. Repetitive immobilization stress (3 h/day, for 1 or 4 weeks) elevated the resting level (24 h after the last immobilization) of CS, but not DOCS. Acute stress (immobilization for 30 min) or cold exposure (−5 °C for 15 min) caused marked increases of CS and DOCS in both nonstressed naive controls and repetitively stressed rats. Four weeks, but not 1 week, of repetitive immobilization stress potentiated the responsiveness of CS to both acute stress and cold, and that of DOCS to acute stress, but not to cold. Cold acclimation (5 °C, 4 weeks) significantly elevated both corticosteroids but did not affect the resting levels (18 h after being transferred to 25 °C) or the responsiveness of both CS and DOCS to either acute stress or cold. These results suggest that repetitive immobilization stress, but not cold acclimation, could enhance nonshivering thermogenesis, at least in part, through an improvement in the responsiveness of adrenocortical hormone secretion to acute stress or cold.

2007 ◽  
Vol 292 (4) ◽  
pp. E1173-E1182 ◽  
Author(s):  
Helmer F. Figueiredo ◽  
Yvonne M. Ulrich-Lai ◽  
Dennis C. Choi ◽  
James P. Herman

It is well established that estrogens markedly enhance the glucocorticoid response to acute stress in females. However, the precise mechanism responsible for this regulation is poorly understood. Here, we tested whether estrogens enhance the activation of the paraventricular nucleus (PVN) of the hypothalamus by measuring stress-induced c- fos mRNA expression in the PVN of restraint-stressed ovariectomized (OVX) rats treated with physiologically relevant doses of estradiol (E2), the major female estrogen. As expected, E2 enhanced plasma corticosterone responses to restraint in OVX females. However, E2 markedly attenuated the stress-induced c- fos gene expression in the PVN and inhibited plasma ACTH responses in these animals. Furthermore, E2-inhibitory effects were mimicked by progesterone (P) alone or in combination with E2. Interestingly, the suppressive central effects of both E2 and P were apparently independent of basal paraventricular corticotropin-releasing hormone (CRH) transcription, since these ovarian steroids did not significantly affect PVN CRH mRNA expression in unstressed rats. These unexpected findings suggested that E2 promotes glucocorticoid hypersecretion in females by additional peripheral (i.e., adrenal) mechanisms. Indeed, E2 markedly enhanced plasma corticosterone responses and adrenal corticosterone content in dexamethasone-blocked OVX rats challenged with varying doses of exogenous ACTH. These results suggest that enhanced adrenal sensitive to ACTH is an important physiological mechanism mediating E2-related glucocorticoid hypersecretion in stressed females.


1971 ◽  
Vol 51 (4) ◽  
pp. 745-749 ◽  
Author(s):  
S. FELDMAN ◽  
N. CONFORTI ◽  
I. CHOWERS

SUMMARY The effects of ether stress and of photic and acoustic stimulation on adrenocortical responses were studied in normal rats and in rats with bilateral lesions in the medial forebrain bundle (MFB). While the response to ether stress was slightly reduced, the neurogenic stimuli produced much lower plasma corticosterone levels in the lesioned animals compared with intact rats. The neural pathways and the role of the MFB in mediating adrenocortical responses to neurogenic stimuli are discussed. The present results demonstrate that the MFB is the main final afferent pathway through which neural impulses to the hypothalamus are propagated, thus activating the secretion of adrenocorticotrophin.


2011 ◽  
Vol 301 (2) ◽  
pp. R473-R483 ◽  
Author(s):  
Jake D. Bauwens ◽  
Eric G. Schmuck ◽  
Christopher R. Lindholm ◽  
Rebecca L. Ertel ◽  
Jacob D. Mulligan ◽  
...  

Recent studies indicate that a substantial amount of metabolically active brown adipose tissue (BAT) exists in adult humans. Given the unique ability of BAT to convert calories to heat, there is intense interest in understanding the regulation of BAT metabolism in hopes that its manipulation might be an effective way of expending excess calories. Because of the established role of AMP-activated protein kinase (AMPK) as a “metabolic master switch” and its extremely high levels of activity in BAT, it was hypothesized that AMPK might play a central role in regulating BAT metabolism. To test this hypothesis, whole body α1-AMPK−/− (knockout) and wild-type mice were studied 1) under control (room temperature) conditions, 2) during chronic cold exposure (14 days at 4°C), and 3) during acute nonshivering thermogenesis (injection of a β3-adrenergic agonist). Under control conditions, loss of α1-AMPK resulted in downregulation of two important prothermogenic genes in BAT, thyrotropin-releasing hormone (−9.2-fold) and ciliary neurotrophic factor (−8.7-fold). Additionally, it caused significant upregulation of α2-AMPK activity in BAT, white adipose tissue, and liver, but not cardiac or skeletal muscle. During acute nonshivering thermogenesis and chronic cold exposure, body temperature was indistinguishable in the α1-AMPK−/− and wild-type mice. Similarly, the degree of cold-induced hyperphagia was identical in the two groups. We conclude that α1-AMPK does not play an obligatory role in these processes and that adaptations to chronic loss of α1-AMPK are able to compensate for its loss via several mechanisms.


Endocrinology ◽  
2004 ◽  
Vol 145 (11) ◽  
pp. 4890-4896 ◽  
Author(s):  
Meghan M. Taylor ◽  
Willis K. Samson

Abstract Adrenomedullin (AM) has been reported to have actions at each level of the hypothalamo-pituitary-adrenal (HPA) axis, suggesting that the peptide plays a role in the organization of the neuroendocrine responses to stress. We examined the mechanism by which AM regulates the central nervous system branch of the HPA axis as well as the possible role of AM in the modulation of the releases of two other hormones, prolactin and GH, whose secretions also are altered by stress. Intracerebroventricular administration of AM led to elevated plasma corticosterone levels in unrestrained, conscious male rats. This effect was abrogated by pretreatment with a CRH antagonist, suggesting that AM activates the HPA axis by causing the release of CRH into hypophyseal portal vessels. In addition, AM given intracerebroventricularly stimulated the release of prolactin but did not alter the secretion of GH. We propose that AM produced in the brain may be an important neuromodulator of the hormonal stress response.


1986 ◽  
Vol 250 (6) ◽  
pp. E669-E676 ◽  
Author(s):  
C. I. Edwards ◽  
R. J. Howland

Arginine-stimulated insulin and glucagon outputs from isolated perfused pancreata of warm-acclimated and 2-, 4-, and 6-wk cold-acclimated rats (4 degrees C) were determined to assess whether observed changes in these parameters were a result of cold exposure per se or a part of the adaptive process of cold acclimation. Progressive and sequential changes were seen in both insulin and glucagon outputs. At 2 wk cold acclimation, glucagon rose and insulin output tended to fall, at 4 wk, glucagon output remained elevated and insulin output was further reduced, and at 6 wk, glucagon output had returned to control levels, whereas insulin output was substantially further reduced. These changes resulted in reduction of the insulin-to-glucagon molar ratio of the total arginine-induced output from 7.27 +/- 1.76 (SE) in the warm acclimate to 2.31 +/- 0.79 (SE) at 2 wk, 1.42 +/- 0.29 (SE) at 4 wk, and 1.26 +/- 0.21 (SE) at 6 wk cold acclimation. The data do not provide in vitro support for the hypothesis that changes in pancreatic hormone secretion in vivo are a consequence of cold exposure and not cold acclimation.


2014 ◽  
Vol 307 (11) ◽  
pp. E1020-E1029 ◽  
Author(s):  
Ruy A. Louzada ◽  
Maria C. S. Santos ◽  
João Paulo A. Cavalcanti-de-Albuquerque ◽  
Igor F. Rangel ◽  
Andrea C. F. Ferreira ◽  
...  

During cold acclimation, shivering is progressively replaced by nonshivering thermogenesis. Brown adipose tissue (BAT) and skeletal muscle are relevant for nonshivering thermogenesis, which depends largely on thyroid hormone. Since the skeletal muscle fibers progressively adapt to cold exposure through poorly defined mechanisms, our intent was to determine whether skeletal muscle type 2 deiodinase (D2) induction could be implicated in the long-term skeletal muscle cold acclimation. We demonstrate that in the red oxidative soleus muscle, D2 activity increased 2.3-fold after 3 days at 4°C together with the brown adipose tissue D2 activity, which increased 10-fold. Soleus muscle and BAT D2 activities returned to the control levels after 10 days of cold exposure, when an increase of 2.8-fold in D2 activity was detected in white glycolytic gastrocnemius but not in red oxidative gastrocnemius fibers. Propranolol did not prevent muscle D2 induction, but it impaired the decrease of D2 in BAT and soleus after 10 days at 4°C. Cold exposure is accompanied by increased oxygen consumption, UCP3, and PGC-1α genes expression in skeletal muscles, which were partialy prevented by propranolol in soleus and gastrocnemius. Serum total and free T3 is increased during cold exposure in rats, even after 10 days, when BAT D2 is already normalized, suggesting that skeletal muscle D2 activity contributes significantly to circulating T3 under this adaptive condition. In conclusion, cold exposure is accompanied by concerted changes in the metabolism of BAT and oxidative and glycolytic skeletal muscles that are paralleled by type 2 deiodinase activation.


1999 ◽  
Vol 277 (3) ◽  
pp. R863-R868 ◽  
Author(s):  
Rosa Andrés ◽  
Octavi Martí ◽  
Antonio Armario

To determine the role of glucocorticoids in the appearance of the facilitatory effect of stress on the ACTH response to a subsequent stress, sham-operated (Sham) rats and rats adrenalectomized (ADX) and supplemented with 50 mg/l corticosterone (B) in the drinking saline (ADX + B) were subjected to 1 min of immobilization stress (Imo) four consecutive times with an interstressor interval of 90 min. Sham rats showed a similar pattern of ACTH response to the first and fourth exposures to Imo. ADX + B rats showed an exacerbated ACTH response to the fourth Imo, despite higher prestress levels than those observed before the first Imo. In another experiment, no facilitatory effect of previous stress on ACTH response was found in ADX rats, but supplementation with B in the drinking saline for 1 wk resulted in facilitation of the ACTH response. We conclude that repeated exposure to a short-time stress induces a facilitatory effect on the ACTH response that is uncovered by eliminating stress-induced glucocorticoid release but needs B doses resulting in approximately basal circulating glucocorticoid levels to be induced or expressed.


2019 ◽  
Vol 126 (6) ◽  
pp. 1598-1606 ◽  
Author(s):  
Kyle Gordon ◽  
Denis P. Blondin ◽  
Brian J. Friesen ◽  
Hans Christian Tingelstad ◽  
Glen P. Kenny ◽  
...  

Daily compensable cold exposure in humans reduces shivering by ~20% without changing total heat production, partly by increasing brown adipose tissue thermogenic capacity and activity. Although acclimation and acclimatization studies have long suggested that daily reductions in core temperature are essential to elicit significant metabolic changes in response to repeated cold exposure, this has never directly been demonstrated. The aim of the present study is to determine whether daily cold-water immersion, resulting in a significant fall in core temperature, can further reduce shivering intensity during mild acute cold exposure. Seven men underwent 1 h of daily cold-water immersion (14°C) for seven consecutive days. Immediately before and following the acclimation protocol, participants underwent a mild cold exposure using a novel skin temperature clamping cold exposure protocol to elicit the same thermogenic rate between trials. Metabolic heat production, shivering intensity, muscle recruitment pattern, and thermal sensation were measured throughout these experimental sessions. Uncompensable cold acclimation reduced total shivering intensity by 36% ( P = 0.003), without affecting whole body heat production, double what was previously shown from a 4-wk mild acclimation. This implies that nonshivering thermogenesis increased to supplement the reduction in the thermogenic contribution of shivering. As fuel selection did not change following the 7-day cold acclimation, we suggest that the nonshivering mechanism recruited must rely on a similar fuel mixture to produce this heat. The more significant reductions in shivering intensity compared with a longer mild cold acclimation suggest important differential metabolic responses, resulting from an uncompensable compared with compensable cold acclimation. NEW & NOTEWORTHY Several decades of research have been dedicated to reducing the presence of shivering during cold exposure. The present study aims to determine whether as little as seven consecutive days of cold-water immersion is sufficient to reduce shivering and increase nonshivering thermogenesis. We provide evidence that whole body nonshivering thermogenesis can be increased to offset a reduction in shivering activity to maintain endogenous heat production. This demonstrates that short, but intense cold stimulation can elicit rapid metabolic changes in humans, thereby improving our comfort and ability to perform various motor tasks in the cold. Further research is required to determine the nonshivering processes that are upregulated within this short time period.


Author(s):  
Malathi S. ◽  
Vidyashree . ◽  
Ravindran Rajan

Objective: To identify the memory enhancing role of Michelia champaca in acute noise stressed animals. Methods: Male Wistar albino rats were used in this study. Animals were exposed to noise for 4 h before testing for memory. Thereafter, the plasma corticosterone level and acetylcholinesterase activity were estimated in the discrete regions of the brain, and the memory related behavior were assessed by eight arm radial maze.Results: Our results showed that Michelia champaca enhances the memory activity and decreases the corticosterone concentrations in acute noise stress animals treated with M. champaca. Moreover, it also decreased brain acetylcholinesterase activity when compared with the acute stress group (p<0.05). Furthermore, behavioral tests indicate that working memory, is enhanced by acute stress and decreases the error levels in all the parameters studied in the behavior aspects when compared to control animals.Conclusion: These findings suggest that Michelia champaca enhances the memory in albino rats and might be useful therapeutically for cognitive related dysfunctions. This could be due to the presence of memory boosting compounds and its antistressor and anti-acetylcholinesterase activity, thereby reduces the levels of serum corticosterone and inhibition of cholinesterase enzyme significantly.


1991 ◽  
Vol 71 (4) ◽  
pp. 1355-1363 ◽  
Author(s):  
H. Gautier ◽  
M. Bonora ◽  
S. B. M'Barek ◽  
J. D. Sinclair

The effects of hypoxia (inspired O2 fraction = 0.12) on thermoregulation and on the different sources of thermogenesis were studied in rats before and after periods of 1–4 wk of cold acclimation. Measurements of metabolic rate (VO2) and body temperature (Tb) were made at 5-min intervals, and shivering activity was recorded continuously in groups of rats subjected to three protocols. In protocol 1, rats were exposed to normoxia to an ambient temperature (Ta) of 5 degrees C for 2 h. In protocol 2, at Ta of 5 degrees C, rats were exposed for 30 min to normoxia, then for 45 min to hypoxia, and finally for 30 min to normoxia. In protocol 3, in the non-cold-acclimated (NCA) rats, Ta was decreased from 30 to 5 degrees C in steps of 5 degrees C and of 30-min duration while in cold-acclimated (CA) rats at 5 degrees C for 4-wk, Ta was increased from 5 to 30 degrees C in steps of 5 degrees C and of 30-min duration. Recordings were made in normoxia and in hypoxia on different days in the same animals. The results showed that 1) in NCA rats, cold exposure in normoxia induced increases in VO2 and shivering that were proportional to the decrease in Ta; 2) in CA rats in normoxia, for a given Ta, VO2 and Tb were higher than in NCA rats, whereas shivering was generally lower; and 3) in both NCA and CA rats, hypoxia induced a transient decrease in shivering and a sustained decrease in nonshivering thermogenesis associated with a marked decrease in Tb that was about the same in NCA and CA rats. We speculate that hypoxia acts on Tb control to produce a general inhibition of thermogenesis. Nonshivering thermogenesis is markedly sensitive to hypoxia, especially demonstrable in CA rats; a recovery or even an increase in shivering can compensate for the decrease in nonshivering thermogenesis.


Sign in / Sign up

Export Citation Format

Share Document