Effects of temperature and salinity on immature and juvenile Neomysis americana (Smith) (Crustacea; Mysidacea)

1982 ◽  
Vol 60 (11) ◽  
pp. 2725-2728 ◽  
Author(s):  
D. S. Pezzack ◽  
S. Corey

The temperature and salinity tolerance of newly released young Neomysis americana was measured for two acclimation temperatures and salinities. The newly released young possess a wide tolerance range to changes in temperature and salinity. Salinities as low as 4‰ had no effect on the molt or growth rate. The effect of environmental conditions on the distribution and life history are discussed.

2020 ◽  
Vol 639 ◽  
pp. 185-197 ◽  
Author(s):  
MJ Malick ◽  
ME Hunsicker ◽  
MA Haltuch ◽  
SL Parker-Stetter ◽  
AM Berger ◽  
...  

Environmental conditions can have spatially complex effects on the dynamics of marine fish stocks that change across life-history stages. Yet the potential for non-stationary environmental effects across multiple dimensions, e.g. space and ontogeny, are rarely considered. In this study, we examined the evidence for spatial and ontogenetic non-stationary temperature effects on Pacific hake Merluccius productus biomass along the west coast of North America. Specifically, we used Bayesian additive models to estimate the effects of temperature on Pacific hake biomass distribution and whether the effects change across space or life-history stage. We found latitudinal differences in the effects of temperature on mature Pacific hake distribution (i.e. age 3 and older); warmer than average subsurface temperatures were associated with higher biomass north of Vancouver Island, but lower biomass offshore of Washington and southern Vancouver Island. In contrast, immature Pacific hake distribution (i.e. age 2) was better explained by a nonlinear temperature effect; cooler than average temperatures were associated with higher biomass coastwide. Together, our results suggest that Pacific hake distribution is driven by interactions between age composition and environmental conditions and highlight the importance of accounting for varying environmental effects across multiple dimensions.


2003 ◽  
Vol 81 (6) ◽  
pp. 1096-1106 ◽  
Author(s):  
Dan Cogalniceanu ◽  
Claude Miaud

River floodplains are disturbance-dominated landscapes where floods are major regulators of both aquatic and nearby terrestrial communities. Amphibians are common inhabitants of floodplains and their life cycle depends on both aquatic and terrestrial habitats. We focused on how different syntopic species of amphibians reacted to the environmental conditions of a large river floodplain. We examined life-history traits such as population age structure and growth in small- and large-bodied species of anurans and urodeles in the lower Danube River floodplain in Romania. Two newt species, Triturus vulgaris (small-bodied) and Triturus dobrogicus (large-bodied), and two anuran taxa, Bombina bombina (small-bodied) and the Rana esculenta complex (large-bodied), were included in the study. The ages of individuals estimated by skeletochronology varied from 3 to 5–6 years for T. vulgaris and from 2–3 to 4–5 years for T. dobrogicus. In the anurans, ages varied from 2 to 5 years in B. bombina and from 4 to 10 years in the R. esculenta complex. The numbers of breeding opportunities (i.e., the number of years the adults reproduce) are similar in both newt species (3), while growth rates and age at maturity differ between the large- and small-bodied species. In anurans, the number of breeding opportunities for the smallest species, B. bombina (4), is associated with a high growth rate and earlier maturation. In the larger R. esculenta complex, the higher number of breeding opportunities (7) is associated with a low growth rate and delayed maturation. The study of age distribution and associated parameters provides useful information on population life history. We discuss how age structure and growth of amphibian populations in large river floodplains can be used as indicators of environmental conditions.


Author(s):  
Kim N. Mouritsen ◽  
A. Gorbushin ◽  
K. Thomas Jensen

The influence of various species of digenean trematodes on the in situ growth rate of Littorina littorea (Gastropoda: Prosobranchia) from different habitats was investigated. The main results showed: (1) that infections either reduced or had no significant effect on growth in comparison with uninfected snails; (2) that the same type of infection could have a differential effect on growth depending on the habitat/population from which the snails originated. These findings are consistent with the life history hypothesis expecting no or a stunting effect of trematode infections on the growth of longer-lived snails, but do also emphasize that growth rates following trematode invasion can be significantly modified by environmental conditions, such as, food availability.


Author(s):  
Michelle V. Evans ◽  
Philip M. Newberry ◽  
Courtney C. Murdock

Mosquito-borne disease transmission is highly dependent on environmental conditions throughout the lifetime of a mosquito. In addition to direct effects of the current environment, carry-over effects from the environments of previous life-stages can influence an adult mosquito's life history traits. In this chapter, we review past work on the carry-over effects of temperature, nutrition, competition, and microbial diversity of the larval environment on disease transmission in mosquitoes. We then discuss how carry-over effects can be integrated into modeling studies and future directions for work on carry-over effects in mosquito-borne disease systems.


2014 ◽  
Vol 514 ◽  
pp. 217-229 ◽  
Author(s):  
HY Wang ◽  
LW Botsford ◽  
JW White ◽  
MJ Fogarty ◽  
F Juanes ◽  
...  

2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Louise C Archer ◽  
Stephen A Hutton ◽  
Luke Harman ◽  
W Russell Poole ◽  
Patrick Gargan ◽  
...  

Abstract Metabolic rates vary hugely within and between populations, yet we know relatively little about factors causing intraspecific variation. Since metabolic rate determines the energetic cost of life, uncovering these sources of variation is important to understand and forecast responses to environmental change. Moreover, few studies have examined factors causing intraspecific variation in metabolic flexibility. We explore how extrinsic environmental conditions and intrinsic factors contribute to variation in metabolic traits in brown trout, an iconic and polymorphic species that is threatened across much of its native range. We measured metabolic traits in offspring from two wild populations that naturally show life-history variation in migratory tactics (one anadromous, i.e. sea-migratory, one non-anadromous) that we reared under either optimal food or experimental conditions of long-term food restriction (lasting between 7 and 17 months). Both populations showed decreased standard metabolic rates (SMR—baseline energy requirements) under low food conditions. The anadromous population had higher maximum metabolic rate (MMR) than the non-anadromous population, and marginally higher SMR. The MMR difference was greater than SMR and consequently aerobic scope (AS) was higher in the anadromous population. MMR and AS were both higher in males than females. The anadromous population also had higher AS under low food compared to optimal food conditions, consistent with population-specific effects of food restriction on AS. Our results suggest different components of metabolic rate can vary in their response to environmental conditions, and according to intrinsic (population-background/sex) effects. Populations might further differ in their flexibility of metabolic traits, potentially due to intrinsic factors related to life history (e.g. migratory tactics). More comparisons of populations/individuals with divergent life histories will help to reveal this. Overall, our study suggests that incorporating an understanding of metabolic trait variation and flexibility and linking this to life history and demography will improve our ability to conserve populations experiencing global change.


Biology ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 695
Author(s):  
Sara Farhadi ◽  
Behrooz Atashbar Kangarloei ◽  
Ahmad Imani ◽  
Kourosh Sarvi Moghanlou

B. orientalis, fairy shrimp, is often among the most conspicuous invertebrates inhabiting temporary aquatic habitats with a typical variation in environmental conditions. Its life history characteristics and biochemical composition were studied under four different photoperiodic regimes (24L:0D, 0L:24D, 16L:8D, and 12L:12D). The significantly highest cumulative and initial hatching rates (48 h) were obtained at 24L:0D (p < 0.05). Cultivating the larvae under different photoperiods did not significantly affect specific growth rate (SGR) (p > 0.05). However, higher final total body length and daily growth rate were recorded under constant darkness. Higher lipid content was found at 24L:0D to the extent that it was more than two times higher than that at 16L:8D and 12L:12D (p < 0.05). There was also a remarkable increase in body crude protein content at 24L:0D (p < 0.05). Body fatty-acid profiles of the fairy shrimps were also affected by culture condition (p < 0.05). Extension of lighting period resulted in a subtle increase in body contents of arginine, lysine, histidine, isoleucine, leucine, valine, methionine, and phenylalanine, especially in the group kept under a 16L:8D regime. The highest and lowest digestive enzyme activity was observed at 0L:24D and 24L:0D, respectively (p < 0.05). In contrast, the highest and lowest soluble protein content was recorded at 24L:0D and 0L:24D, respectively (p < 0.05). Similarly, antioxidant status was significantly higher at 0L:24D (p < 0.05). In conclusion, a 16L:8D light–dark cycle might be an optimal condition in terms of growth performance and physio-biochemical characteristics. These findings could be helpful in optimizing the rearing conditions for upscaling B. orientalis production.


2009 ◽  
Vol 5 (4) ◽  
pp. 568-570 ◽  
Author(s):  
Roger S. Seymour ◽  
Yuka Ito ◽  
Yoshihiko Onda ◽  
Kikukatsu Ito

The effects of temperature on pollen germination and pollen tube growth rate were measured in vitro in thermogenic skunk cabbage, Symplocarpus renifolius Schott ex Tzvelev, and related to floral temperatures in the field. This species has physiologically thermoregulatory spadices that maintain temperatures near 23°C, even in sub-freezing air. Tests at 8, 13, 18, 23, 28 and 33°C showed sharp optima at 23°C for both variables, and practically no development at 8°C. Thermogenesis is therefore a requirement for fertilization in early spring. The narrow temperature tolerance is probably related to a long period of evolution in flowers that thermoregulate within a narrow range.


1988 ◽  
Vol 68 (4) ◽  
pp. 935-940 ◽  
Author(s):  
M. TOLLENAAR ◽  
T. W. BRUULSEMA

The response of rate and duration of kernel dry matter accumulation to temperatures in the range 10–25 °C was studied for two maize (Zea mays L.) hybrids grown under controlled-environment conditions. Kernel growth rates during the period of linear kernel growth increased linearly with temperature (b = 0.3 mg kernel−1 d−1 °C−1). Kernel dry weight at physiological maturity varied little among temperature treatments because the increase in kernel growth rate with increase in temperature was associated with a decline in the duration of kernel growth proportional to the increase in kernel growth rate.Key words: Zea mays L, period of linear kernel dry matter accumulation, controlled-environment conditions, kernel growth rate


Sign in / Sign up

Export Citation Format

Share Document