Displacement and dispersion of parturient caribou at calving as antipredator tactics

1987 ◽  
Vol 65 (7) ◽  
pp. 1597-1606 ◽  
Author(s):  
A. T. Bergerud ◽  
R. E. Page

Survival of caribou (Rangifer tarandus) calves until 4 months of age was monitored for 8 years in four herds in northern British Columbia, Canada. The chief cause of mortality was predation by wolves (Canis lupus) and grizzly bears (Ursus arctos) and this mortality was correlated within years between all herds. More calves died in years with late springs when extensive snow patches remained during calving in June than in early springs when larger snow-free areas existed. Before calving and after birth, caribou cows sought to space themselves out on snow-free areas in small aggregations at high elevations above treeline. By placing themselves at high elevations, the females increased the distance between themselves and wolves and bears travelling in the valley bottoms, as well as the main alternate prey, moose (Alces alces), which calved only in forest cover at lower elevations. In addition, the reduced snow in early springs meant that there was more space for dispersion. The variation in calf survival for three herds was negatively correlated with the heterogeneity of the calving area. Snow cover disappeared in smaller patches in more rugged mountains regardless of spring phenology, thereby providing a more constant search area for predators from year to year. More uniform mountains had either extensive areas of snow cover (late years) or brown substrates (early years), thus greatly varying the space that predators had to search between years. As stochastic variation in snow cover at calving time alters the searching ability of predators, the aggregation responses of prey, and the spatial overlap between predators and prey, it promotes short-term stability of the prey and lessens the probability of extinction.


Rangifer ◽  
2003 ◽  
Vol 23 (5) ◽  
pp. 143 ◽  
Author(s):  
Gail H. Collins ◽  
Michael T. Hinkes ◽  
Andrew R. Aderman ◽  
James D. Woolington

Barren ground caribou (Rangifer tarandus) were reintroduced to the Nushagak Peninsula, Alaska in February of 1988 after an absence of more than 100 years. Since reintroduction, herd growth and population dynamics have been monitored closely. At this time, there has been no significant dispersal from the herds' core range. The Nushagak Peninsula Caribou Herd (NPCH) grew rapidly from 146 reintroduced individuals to over 1000 in 13 years. Dramatic mean annual growth during the first 6 years (1988-1994) of 38% (r = 0.32) can be attributed to the high percentage of females in the initial reintroduction, high calf production and survival, exceptional range conditions, few predators, and no hunting. However, the populations' exceptional growth (peak counts of 1400) slowed and stabilized between 1996¬1998 and then decreased between 1998 and 2000. Size, body condition and weights of calves captured in 2000 were significantly lower than those captured in 1995 and 1997. Although calf production also decreased from close to 100% (1990-1995) to about 91% (1996-2000), overall calf survival continued to be high. Legal harvest began in 1995, and harvest reports have accounted for approximately 3% of population mortality annually. Although brown bears (Ursus arctos) and wolves (Canis lupus) are present, the extent of predation is unknown. Mean home range of the NPCH was 674 km2 and group sizes were greatest during post-calving aggregation in July (mean = 127). Caribou population density on the Nushagak Peninsula reached approximately 1.2 caribou/km2 in 1997 before declining to about 1.0 caribou/km2. A range survey in 1994 noted only trace utilization of lichens on the Nushagak Peninsula by caribou. A subsequent survey in 1999 found moderate to severe utilization in 46% of plots, suggesting the reintroduced herd was beginning to alter range condition. Between 1997 and 2000, both calf production and condition of 10-month-old calves declined. Calving has also been delayed in recent years. However, we suspect the reduced herd growth can be attributed to increasing hunting pressure and some dispersal of caribou from the Peninsula, not reduced range condition.



2004 ◽  
Vol 118 (2) ◽  
pp. 239 ◽  
Author(s):  
Robert J. Gau ◽  
Philip D. McLoughlin ◽  
Ray Case ◽  
H. Dean Cluff ◽  
Robert Mulders ◽  
...  

Between May 1995 and June 1999, we equipped eight subadult male (3-5 yrs old) Grizzly Bears (Ursus arctos) with satellite radio-collars within a study area of 235,000 km2, centred 400 km northeast of Yellowknife, Northwest Territories, Canada. Subadult male annual home ranges were extraordinarily large (average = 11,407 km2, SE = 3849) due, in part, to their movement's occasional linear directionality. We believe their long-range linear movements may reflect some individuals tracking the migration of Caribou (Rangifer tarandus). Seasonal daily movement patterns were similar to adult males that were previously reported. The areas used by these bears are the largest ranges reported for any Grizzly Bears and the scale of their movements may put individual bears in contact with humans even when developments are hundreds of kilometres from the central home range of an animal.



Ecosystems ◽  
2019 ◽  
Vol 23 (5) ◽  
pp. 1056-1074
Author(s):  
Bethany J. Blakely ◽  
Adrian V. Rocha ◽  
Jason S. McLachalan

AbstractAnthropogenic land use affects climate by altering the energy balance of the Earth’s surface. In temperate regions, cooling from increased albedo is a common result of historical land-use change. However, this albedo cooling effect is dependent mainly on the exposure of snow cover following forest canopy removal and may change over time due to simultaneous changes in both land cover and snow cover. In this paper, we combine modern remote sensing data and historical records, incorporating over 100 years of realized land use and climatic change into an empirical assessment of centennial-scale surface forcings in the Upper Midwestern USA. We show that, although increases in surface albedo cooled through strong negative shortwave forcings, those forcings were reduced over time by a combination of forest regrowth and snow-cover loss. Deforestation cooled strongly (− 5.3 Wm−2) and mainly in winter, while composition shift cooled less strongly (− 3.03 Wm−2) and mainly in summer. Combined, changes in albedo due to deforestation, shifts in species composition, and the return of historical forest cover resulted in − 2.81 Wm−2 of regional radiative cooling, 55% less than full deforestation. Forcings due to changing vegetation were further reduced by 0.32 Wm−2 of warming from a shortened snow-covered season and a thinning of seasonal snowpack. Our findings suggest that accounting for long-term changes in land cover and snow cover reduces the estimated cooling impact of deforestation, with implications for long-term land-use planning.



1988 ◽  
Vol 66 (11) ◽  
pp. 2492-2499 ◽  
Author(s):  
R. D. Boertje ◽  
W. C. Gasaway ◽  
D. V. Grangaard ◽  
D. G. Kelleyhouse

Radio-collared grizzly bears (Ursus arctos) were sighted daily for approximately 1-month periods during spring, summer, and fall to estimate predation rates. Predation rates on adult moose (Alces alces) were highest in spring, lowest in summer, and intermediate in fall. The highest kill rates were by male grizzlies killing cow moose during the calving period. We estimated that each adult male grizzly killed 3.3–3.9 adult moose annually, each female without cub(s) killed 0.6–0.8 adult moose and 0.9–1.0 adult caribou (Rangifer tarandus) annually, and each adult bear killed at least 5.4 moose calves annually. Grizzly predation rates on calves and grizzly density were independent of moose density and are probably more related to area-specific factors, e.g., availability of alternative foods. An important implication of our results is that managers should not allow moose densities to decline to low levels, because grizzlies can have a greater relative impact on low- than on high-density moose populations and because grizzly predation can be difficult to reduce. Grizzly bears were primarily predators, rather than scavengers, in this area of low prey availability (11 moose/grizzly bear); bears killed four times more animal biomass than they scavenged.



1996 ◽  
Vol 74 (10) ◽  
pp. 1922-1933 ◽  
Author(s):  
Jean-Pierre Ouellet ◽  
Jean Ferron ◽  
Luc Sirois

The space and habitat use patterns of the threatened Gaspé caribou (Rangifer tarandus caribou) were documented using telemetry. Between 1987 and 1992, 701 radiolocations were recorded, primarily for adult females (n = 28). Five habitats available to caribou (hardwood, immature, mature fir, mature spruce, alpine) are described and biomass of arboreal lichen, an important winter food source, is estimated. Regardless of sex and age, almost all locations (91%) were recorded within the limits of Gaspé Provincial Park. Home-range size of adult females averaged 148 km2 (convex polygon); 95% of adult female locations were within 107 km2 and 50% within 15 km2 (harmonic mean). Home-range sizes were small and did not vary seasonally or annually. Throughout the year caribou were located more frequently than expected at high elevations (> 915 m) and less frequently than expected at low elevations (0–685 m). Consequently, alpine habitat was used more frequently than expected. Caribou concentrated their activity in two distinct areas: the alpine plateaus of Mont Albert and Mont Jacques-Cartier. No caribou used both areas (with the exception of a lone female). These two caribou groups should be viewed as two subpopulations. The biomass of arboreal lichens was greatest in mature fir and spruce stands, with 50–60 kg/ha available at a height of 4 m. The altitudinal distribution of this resource may partly explain the strong selection of high-elevation sites made by caribou in winter. Our results also support the hypothesis that cow–calf groups remain at high elevations to reduce the risk of predation by coyotes (Canis latrans) and black bears (Ursus americanus). The proximity of mature forests and alpine habitat, at high elevations, in two areas of the park may explain the small extent of adult female home ranges and the segregation of Gaspé caribou into two groups.



2020 ◽  
Vol 116 (11/12) ◽  
Author(s):  
Michael J. Wingfield ◽  
Brett Hurley ◽  
Brenda Wingfield ◽  
Bernard Slippers

South Africa is a country with very limited natural forest cover. Consequently, the timber and fibre needs of the country cannot be provided for from indigenous forest. It is largely for this reason that South Africa initially developed a highly productive plantation forest industry, which today makes a substantial contribution to the local economy. These plantations are based on non-native species of Eucalyptus, Pinus and Australian Acacia. In the early years of establishment, South African plantations were relatively free of pest and pathogen problems. But, over time, an increasing number of insects, fungi and bacteria have emerged as serious threats to the sustainability of the forestry industry. Numerous native pests and pathogens, especially insects, have adapted to these introduced tree species to cause damage or disease. The problem is compounded by the accidental introduction of non-native pests and pathogens, and this has been at a rapidly increasing rate over the past three decades. Some of these introduced pests and pathogens also threaten the fitness and even the survival of many indigenous South African tree species. Fortunately, South Africa has developed an impressive knowledge base and range of integrated management options to deal with these problems. This development was first driven by government programmes, and in more recent years by public–private partnerships between industry, universities and government. It is clear from the pattern of emergence of pests and pathogens in recent years that South Africa will deal with an increasing number of these problems and a continuously changing tree health environment. This requires robust investment in both quarantine and mitigation mechanisms to protect the country’s biodiversity as well as to ensure the sustainability of its wood and fibre industries.



2020 ◽  
Author(s):  
Rachel Slatyer ◽  
Pieter Andrew Arnold

Seasonal snow is among the most important factors governing the ecology of many terrestrial ecosystems, but rising global temperatures are changing snow regimes and driving widespread declines in the depth and duration of snow cover. Loss of the insulating snow layer will fundamentally change the environment. Understanding how individuals, populations, and communities respond to different snow conditions is thus essential for predicting and managing future ecosystem change. We synthesized 365 studies that have examined ecological responses to variation in winter snow conditions. This research encompasses a broad range of methods (experimental manipulations, natural snow gradients, and long-term monitoring approaches), locations (35 countries), study organisms (plants, mammals, arthropods, birds, fish, lichen, and fungi), and response measures. Earlier snowmelt was consistently associated with advanced spring phenology in plants, mammals, and arthropods. Reduced snow depth also often increased mortality and/or physical injury in plants, although there were few clear effects on animals. Neither snow depth nor snowmelt timing had clear or consistent directional effects on body size of animals or biomass of plants. With 96% of studies from the northern hemisphere, the generality of these trends across ecosystems and localities is also unclear. We identified substantial research gaps for several taxonomic groups and response types, with notably scarce research on winter-time responses. We have developed an agenda for future research to prioritize understanding of the mechanisms underlying responses to changing snow conditions and the consequences of those responses for seasonally snow-covered ecosystems.



Rangifer ◽  
2003 ◽  
Vol 23 (5) ◽  
pp. 247 ◽  
Author(s):  
Émilie Lantin ◽  
Pierre Drapeau ◽  
Marcel Paré ◽  
Yves Bergeron

Woodland caribou (Rangifer tarandus caribou) require a diversity of forested habitats over large areas and may thus be particularly affected by the large-scale changes in the composition and age-class distribution of forest landscapes induced by the northern expansion of forest management. In this study we examine habitat characteristics associated to the use of calving areas by woodland caribou females and calves at different spatial scales. Thirty females were captured and collared with Argos satellite transmitters that allowed to locate 14 calving areas. Field surveys were conducted at each of these areas to measure the landscape composition of forest cover types and local vegetation characteristics that are used for both forage conditions and protection cover. At the scale of the calving area, univariate comparisons of the amount of forest cover types between sites with and without calves showed that the presence of calves was associated to mature black spruce forest with a high percent cover of terrestrial lichens. Within calving grounds, univariate comparisons showed that vegetation features like ericaceans and terrestrial lichens, that are important food resources for lactating females, were more abundant in calving areas where females were seen with a calf in mid-July than in areas where females were seen alone. The protection of the vegetation cover against predators was however similar between calving areas with or with¬out a calf. Logistic regression results also indicated that vegetation characteristics associated to forage conditions were positively associated to calf presence on calving grounds. Our results suggest that foraging conditions should be given more attention in analyses on habitat requirements of woodland caribou.



2007 ◽  
Vol 121 (2) ◽  
pp. 155 ◽  
Author(s):  
Astrid Vik Stronen ◽  
Paul Paquet ◽  
Stephen Herrero ◽  
Seán Sharpe ◽  
Nigel Waters

During 1997–1999, 32 Woodland Caribou (Rangifer tarandus caribou) were translocated from the Sustut Herd to the Telkwa Mountains in westcentral British Columbia to augment recovery of the Telkwa Caribou Herd. The animals were fitted with radiocollars and located during 1997–2000 to determine selection of habitat features and terrain variables. Six Caribou calves were also collared to determine causes and timing of calf mortality during summer 1999. Defining available habitat for newly translocated animals is often arbitrary and subjective, and we based the analyses on ranks for habitat use and availability as this is less sensitive to the inclusion or exclusion of a questionable resource. This method represents some loss of information but provides indications of the relative importance of various habitat types without classifying any as avoided. High elevation habitat (> 1700 masl) on moderate slopes (16 – 45°) received the highest ranks, as did “warm” (136 – 315°) aspects and forests > 250 years old. Three calves died shortly after birth. One calf appeared to have been killed by predation, likely by a Golden Eagle (Aquila chrysaetos), and one calf was abandoned by the cow. Cause of death for the third calf is unknown. To assess habitat use associated with calving we compared summer locations with data obtained throughout the rest of 1999 for eight cows with calves and eight without calves. We found significant difference in use of elevation during calving time, when cows with calves remained at high elevations and barren cows generally descended to lower elevation habitat. Surveys conducted in 2005, five years after the completion of the initial study, produced a count of approximately 90 Caribou. This suggests that in the short term, the translocation was successful in re-establishing a self-sustaining Caribou population in the Telkwa Mountains.



2021 ◽  
Author(s):  
Arnab Muhuri ◽  
Simon Gascoin ◽  
Lucas Menzel ◽  
Tihomir S. Kostadinov ◽  
Adrian A. Harpold ◽  
...  

<p>In cold regions of the world with significant forest cover, a notable volume of precipitated snow resides under the forest cover. In such regions, snow is an abundant and valuable natural resource and assessing the winter extent of snow precipitation is particularly important for forecasting hydroelectric power potential, managing forests for maximizing the spring snowmelt yield, and monitoring animal habitats.</p><p>Forest presents challenging scenarios by obscuring much of the underlying snow over the forest floor from the view of the imaging spaceborne sensors. Moreover, due to the prevalence of mixed pixels, particularly in the forested landscapes, merely binarizing pixels into snow/snow-free can introduce errors while integrating the snow-covered area (SCA) information for hydro-climatological modeling. Therefore, the fractional snow-covered area (fSCA), which is a finer representation of the binary SCA and defines the snow-covered fraction of the pixel area, is a more reliable indicator. </p><p>The recently launched High Resolution Snow & Ice (HRSI) monitoring service by Copernicus allows exploitation of the high-resolution Sentinel-2 data by facilitating free distribution of NDSI-based operational snow cover maps. It also offers the feasibility to estimate the fractional snow cover (FSC) without the requirement of any end-member spectra. In this investigation, we assessed the performance of the NDSI-based operational snow cover area (SCA) monitoring algorithm and the associated FSC with respect to factors influencing the algorithm's performance. The investigation focused over test sites located in the northern Sierra Nevada mountain range in California, US and the central Spanish Pyrenees. The analyses indicated that terrestrial characteristics like tree cover density (TCD) and meteorological factors like incoming solar irradiance impacts the performance of the optical satellite-based snow cover monitoring algorithms. A strong dependence of the algorithm's performance on TCD (negatively correlated) and solar irradiance (positively correlated) was observed.</p>



Sign in / Sign up

Export Citation Format

Share Document