The diving behaviour of Pigeon Guillemots (Cepphus columba) off southern Vancouver Island

1994 ◽  
Vol 72 (5) ◽  
pp. 863-872 ◽  
Author(s):  
James S. Clowater ◽  
Alan E. Burger

The foraging behaviour of Pigeon Guillemots (Cepphus columba) was observed off southern Vancouver Island, British Columbia. Diving bouts comprised 1–24 dives. Birds returned to the surface with prey in 22 of 248 (9%) dives, and mean handling time for prey was 34.7 s. Dives averaged 87 s (ranging from 37 s in water 14 m deep to 144 s at 34 m) and the mean postdive pause lasted 98 s (range 24–232 s). Birds foraged in water depths from 6 to 45 m. The duration of both dives and pauses increased with water depth. Our model of Pigeon Guillemot diving behaviour predicts foraging time at the bottom to be maximized during dives to depths of 22–24 m, while foraging efficiency, (foraging time)/(dive + recovery time), is maximized at 10 m. Calculated work to resist buoyancy and drag during descent and foraging phases of the dive cycle suggest that energetic savings from reduced buoyancy at depth may not explain how birds increase dive duration with increasing depth. Pigeon Guillemots appear to maximize time spent in the foraging patch. In 82% of transects, the most frequently chosen foraging depth was 15–20 m (mode). Model predictions were supported by observations that 43.6% of Pigeon Guillemots preferred water depths of 15–20 m, while 19% preferred water depths of 10–15 m.

Behaviour ◽  
1995 ◽  
Vol 132 (15-16) ◽  
pp. 1241-1253 ◽  
Author(s):  
R.N. Hughes ◽  
P.A. Mackney

AbstractIndividuals were collected from a residential marine population of Spinachia spinachia, an anadromous population of Gasterosteus aculeatus forma trachura and a residential freshwater population of G. aculeatus forma leiura. After maintenance for 2 months on a diet of mysid, individuals were subjected to ten, consecutive daily trials on a diet of amphipods or oligochaetes. During this period, individuals learned to handle the prey more effectively, as measured by attack efficiency, handling efficiency and handling time. Learning was similar among populations but differed between diets, being more pronounced for amphipods, which are more difficult to catch and handle than oligochaetes. Once trained to these diets, fish were tested for foraging efficiency after successively longer periods of stimulus deprivation, when they were fed a maintenance diet of mysid. All three measures of foraging efficiency with the amphipod diet, but only that based on handling time with the oligochacte diet, declined to naive levels in the residential marine and anadromous populations. No decrease in foraging efficiency with either diet occurred in the residential freshwater population. Memory window was 8 d, 10 d and > 25 d in the residential marine, anadromous and residential freshwater populations respectively. The large difference between the freshwater and two marine populations is interpreted as an adaptive response to the stability of arrays of prey, characteristic of their respective habitats.


1997 ◽  
Vol 200 (4) ◽  
pp. 661-675 ◽  
Author(s):  
R M Bevan ◽  
I L Boyd ◽  
P J Butler ◽  
K Reid ◽  
A J Woakes ◽  
...  

The South Georgian shag (Phalacrocorax georgianus) shows a remarkable diving ability comparable to that of penguins, yet nothing is known of the physiology of these birds. In this study, heart rates and abdominal temperatures were recorded continuously in four free-ranging South Georgian shags using an implanted data-logger. A time­depth recorder was also attached to the back of the implanted birds to record their diving behaviour. The diving behaviour of the birds was essentially similar to that reported in other studies, with maximum dive durations for individual birds ranging between 140 and 287 s, and maximum depths between 35 and 101 m. The birds, while at the nest, had a heart rate of 104.0±13.1 beats min-1 (mean ± s.e.m.) and an abdominal temperature of 39.1±0.2 °C. During flights of 221±29 s, heart rate and abdominal temperature rose to 309.5±18.0 beats min-1 and 40.1±0.3 °C, respectively. The mean heart rate during diving, at 103.7±13.7 beats min-1, was not significantly different from the resting values, but the minimum heart rate during a dive was significantly lower at 64.8±5.8 beats min-1. The minimum heart rate during a dive was negatively correlated with both dive duration and dive depth. Abdominal temperature fell progressively during a diving bout, with a mean temperature at the end of a bout of 35.1±1.7 °C. The minimum heart rate during diving is at a sub-resting level, which suggests that the South Georgian shag responds to submersion with the 'classic' dive response of bradycardia and the associated peripheral vasoconstriction and utilisation of anaerobic metabolism. However, the reduction in abdominal temperature may reflect a reduction in the overall metabolic rate of the animal such that the bird can remain aerobic while submerged.


2011 ◽  
Vol 89 (12) ◽  
pp. 1195-1205 ◽  
Author(s):  
Amélie A. Augé ◽  
B. Louise Chilvers ◽  
Lloyd S. Davis ◽  
Antoni B. Moore

Female New Zealand sea lions ( Phocarctos hookeri (Gray, 1844)) at the Auckland Islands (remnant populations) are the deepest and longest diving otariids. These remnant populations are found at the margin of the historical range of the species. We hypothesized that diving behaviours of animals in the core of their historical range is less extreme owing to a better marine habitat. All female New Zealand sea lions (n = 13, aged 2–14 years) born on the Otago Peninsula (initial recolonising population) were equipped with time–depth recorders during April and May 2008, 2009, and 2010. The mean dive depth was 20.2 ± 24.5 m and mean dive duration was 1.8 ± 1.1 min, some of the lowest values reported for otariids. Otago female New Zealand sea lions did not exhibit two distinct diving specialisations as reported at the Auckland Islands. Otago adult females exceeded calculated aerobic dive limits in 7.1% of dives compared with 68.7% at the Auckland Islands. The contrasting differences in diving behaviour between Otago and the Auckland Islands suggest that Otago represents a better marine habitat for New Zealand sea lions, with food easily accessible to animals of all ages.


1997 ◽  
Vol 75 (7) ◽  
pp. 1176-1183 ◽  
Author(s):  
Horacio de la Cueva ◽  
Robert W. Blake

Aerodynamic power equations predict optimal speeds at which birds ought to fly if they are to maximize time spent in the air on a given energy store (minimum power speed, Vmp), distance covered using a given amount of fuel (maximum range speed, Vmr), and rate of delivering food to the chicks in the nest (Vnest), or maximize the daily energy balance (VDBAL). With the aerodynamic model employed, these speeds are 5.3, 7.0, 7.9, and 8.9 m∙s−1, respectively, for the Barn Swallow, Hirundo rustica. A comparison of the predicted flight speed with both the mean and median flight speeds (8 m∙s−1 in both cases; n = 821) recorded with Doppler radar indicates that Barn Swallows fly at speeds not significantly different from Vnest. The true sample size was unknown, and realistic sample sizes are drawn with bootstrap procedures and compared with those given by the number of measurements (821); no significant differences were found. To test the model, energy requirements for growth, prey density, and time spent foraging were varied independently in a sensitivity analysis. Large but realistic changes in these three variables do not contradict the model and predict speeds within the range measured in the field.


1993 ◽  
Vol 23 (6) ◽  
pp. 1052-1059 ◽  
Author(s):  
Rodney J. Keenan ◽  
Cindy E. Prescott ◽  
J.P. Hamish Kimmins

Biomass and C, N, P, and K contents of woody debris and the forest floor were surveyed in adjacent stands of old-growth western red cedar (Thujaplicata Donn)–western hemlock (Tsugaheterophylla (Raf.) Sarg.) (CH type), and 85-year-old, windstorm-derived, second-growth western hemlock–amabilis fir (Abiesamabilis (Dougl.) Forbes) (HA type) at three sites on northern Vancouver Island. Carbon concentrations were relatively constant across all detrital categories (mean = 556.8 mg/g); concentrations of N and P generally increased, and K generally decreased, with increasing degree of decomposition. The mean mass of woody debris was 363 Mg/ha in the CH and 226 Mg/ha in the HA type. The mean forest floor mass was 280 Mg/ha in the CH and 211 Mg/ha in the HA stands. Approximately 60% of the forest floor mass in each forest type was decaying wood. Dead woody material above and within the forest floor represented a significant store of biomass and nutrients in both forest types, containing 82% of the aboveground detrital biomass, 51–59% of the N, and 58–61% of the detrital P. Forest floors in the CH and HA types contained similar total quantities of N, suggesting that the lower N availability in CH forests is not caused by greater immobilization in detritus. The large accumulation of forest floor and woody debris in this region is attributed to slow decomposition in the cool, wet climate, high rates of detrital input following windstorms, and the large size and decay resistance of western red cedar boles.


Author(s):  
P. Fede ◽  
O. Simonin ◽  
I. Ghouila

Three dimensional unsteady numerical simulations of dense pressurized polydisperse fluidized bed have been carried out. The geometry is a medium-scale industrial pilot for ethylene polymerization. The numerical simulation have been performed with a polydisperse collision model. The consistency of the polydisperse model predictions with the monodisperse ones is shown. The results show that the pressure distribution and the mean vertical gas velocity are not modified by polydispersion of the solid phase. In contrast, the solid particle species are not identically distributed in the fluidized bed indicating the presence of particle segregation.


2016 ◽  
Vol 3 (5) ◽  
pp. 160043 ◽  
Author(s):  
Ari S. Friedlaender ◽  
David W. Johnston ◽  
Reny B. Tyson ◽  
Amanda Kaltenberg ◽  
Jeremy A. Goldbogen ◽  
...  

Air-breathing marine animals face a complex set of physical challenges associated with diving that affect the decisions of how to optimize feeding. Baleen whales (Mysticeti) have evolved bulk-filter feeding mechanisms to efficiently feed on dense prey patches. Baleen whales are central place foragers where oxygen at the surface represents the central place and depth acts as the distance to prey. Although hypothesized that baleen whales will target the densest prey patches anywhere in the water column, how depth and density interact to influence foraging behaviour is poorly understood. We used multi-sensor archival tags and active acoustics to quantify Antarctic humpback whale foraging behaviour relative to prey. Our analyses reveal multi-stage foraging decisions driven by both krill depth and density. During daylight hours when whales did not feed, krill were found in deep high-density patches. As krill migrated vertically into larger and less dense patches near the surface, whales began to forage. During foraging bouts, we found that feeding rates (number of feeding lunges per hour) were greatest when prey was shallowest, and feeding rates decreased with increasing dive depth. This strategy is consistent with previous models of how air-breathing diving animals optimize foraging efficiency. Thus, humpback whales forage mainly when prey is more broadly distributed and shallower, presumably to minimize diving and searching costs and to increase feeding rates overall and thus foraging efficiency. Using direct measurements of feeding behaviour from animal-borne tags and prey availability from echosounders, our study demonstrates a multi-stage foraging process in a central place forager that we suggest acts to optimize overall efficiency by maximizing net energy gain over time. These data reveal a previously unrecognized level of complexity in predator–prey interactions and underscores the need to simultaneously measure prey distribution in marine central place forager studies.


2005 ◽  
Vol 128 (2) ◽  
pp. 230-235 ◽  
Author(s):  
J. Jamari ◽  
D. J. Schipper

In this paper we report the experimental investigation to evaluate the published models for the contact of a deformable sphere against a hard flat in the fully plastic contact regime. A new measurement method has been used to measure the contact area. The behavior of the mean contact pressure and the contact area as a function of the contact load are presented. Substantial differences are found between the measurements and the model predictions. A constant value of the mean contact pressure as the load increases is observed, however, the value is lower than the hardness, as often reported. The contact area is found to be a simple truncation of the sphere by a hard flat.


2016 ◽  
Vol 62 (3-4) ◽  
pp. 171-177 ◽  
Author(s):  
Ling-Ying Shuai ◽  
Yan-Ling Song ◽  
Burt P. Kotler ◽  
Keren Embar ◽  
Zhi-Gao Zeng

We studied the foraging behaviour of two sympatric rodents (Meriones meridianus and Dipus sagitta) in the Gobi Desert, Northwestern China. The role of the foraging behaviour in promoting species coexistence was also examined. We used giving-up densities (GUDs) in artificial food patches to measure the patch use of rodents and video trapping to directly record the foraging behaviour, vigilance, and interspecific interactions. Three potential mechanisms of coexistence were evaluated (1) microhabitat partitioning; (2) spatial heterogeneity of resource abundance with a tradeoff in foraging efficiency vs. locomotion; and (3) temporal partitioning on a daily scale. Compared to M. meridianus, D. sagitta generally possessed lower GUDs, spent more time on patches, and conducted more visits per tray per capita, regardless of microhabitat. However, M. meridianus possessed advantages in average harvesting rates and direct interference against D. sagitta. Our results only partly support the third mechanism listed above. We propose another potential mechanism of coexistence: a tradeoff between interference competition and safety, with M. meridianus better at interference competition and D. sagitta better at avoiding predation risk. This mechanism is uncommon in previously studied desert rodent systems.


1966 ◽  
Vol 3 (2) ◽  
pp. 237-246 ◽  
Author(s):  
W. S. B. Paterson ◽  
L. K. Law

Seven determinations of geothermal heat flow were made in the general area of southern Prince Patrick Island in the Canadian Arctic Archipelago. Measurements were made from sea ice in water depths of between 200 and 600 m. The mean heat flow for the two stations on the continental shelf in the Arctic Ocean was 0.46 ± 0.08 μcal cm−2 s−1. The mean heat flow for the five stations in the channels to the east of Mould Bay was 1.46 ± 0.16 μcal cm−2 s−1. The instrument and field methods are described. Errors due to the instrument and to the environment are discussed.


Sign in / Sign up

Export Citation Format

Share Document