Sex and species differences in cell-mediated immune responses in voles

1998 ◽  
Vol 76 (7) ◽  
pp. 1394-1398 ◽  
Author(s):  
Sabra L Klein ◽  
Randy J Nelson

Males generally display reduced immune responses and greater susceptibility to disease than females, possibly reflecting the suppressive effects of androgens on the immune system. It is presumed that this androgenic effect on immune function is more pronounced among polygynous than monogamous species because concentrations of circulating androgens are generally higher among polygynous than monogamous males. The present study examined sex and species differences in cell-mediated immunity of two Microtus species. Cell-mediated immunity was assessed among individually housed polygynous meadow voles (M. pennsylvanicus) and monogamous prairie voles (M. ochrogaster) by examining the proliferative responses of splenocytes to the T-cell mitogen concanavalin A (Con A) and the B-cell mitogen lipopolysaccharide (LPS). Neither sex nor species differences were observed in response to stimulation with Con A. In contrast, meadow voles exhibited higher proliferative responses to LPS than prairie voles. Sex differences in immune function were only observed among prairie voles; males exhibited higher proliferative responses to LPS than females. Male meadow voles had higher circulating testosterone concentrations than male prairie voles and female prairie voles had higher estradiol concentrations than female meadow voles. Males of both Microtus species weighed more than conspecific females. The immunological differences were not related to differences in either body mass or hormone concentrations. Overall, these data do not support the hypothesis that higher androgen concentrations in polygynous males influence sex or species differences in immune function.

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Joel A. Tripp ◽  
Alejandro Berrio ◽  
Lisa A. McGraw ◽  
Mikhail V. Matz ◽  
Jamie K. Davis ◽  
...  

Abstract Background Pair bonding with a reproductive partner is rare among mammals but is an important feature of human social behavior. Decades of research on monogamous prairie voles (Microtus ochrogaster), along with comparative studies using the related non-bonding meadow vole (M. pennsylvanicus), have revealed many of the neural and molecular mechanisms necessary for pair-bond formation in that species. However, these studies have largely focused on just a few neuromodulatory systems. To test the hypothesis that neural gene expression differences underlie differential capacities to bond, we performed RNA-sequencing on tissue from three brain regions important for bonding and other social behaviors across bond-forming prairie voles and non-bonding meadow voles. We examined gene expression in the amygdala, hypothalamus, and combined ventral pallidum/nucleus accumbens in virgins and at three time points after mating to understand species differences in gene expression at baseline, in response to mating, and during bond formation. Results We first identified species and brain region as the factors most strongly associated with gene expression in our samples. Next, we found gene categories related to cell structure, translation, and metabolism that differed in expression across species in virgins, as well as categories associated with cell structure, synaptic and neuroendocrine signaling, and transcription and translation that varied among the focal regions in our study. Additionally, we identified genes that were differentially expressed across species after mating in each of our regions of interest. These include genes involved in regulating transcription, neuron structure, and synaptic plasticity. Finally, we identified modules of co-regulated genes that were strongly correlated with brain region in both species, and modules that were correlated with post-mating time points in prairie voles but not meadow voles. Conclusions These results reinforce the importance of pre-mating differences that confer the ability to form pair bonds in prairie voles but not promiscuous species such as meadow voles. Gene ontology analysis supports the hypothesis that pair-bond formation involves transcriptional regulation, and changes in neuronal structure. Together, our results expand knowledge of the genes involved in the pair bonding process and open new avenues of research in the molecular mechanisms of bond formation.


1999 ◽  
Vol 277 (5) ◽  
pp. R1362-R1367 ◽  
Author(s):  
Sabra L. Klein ◽  
H. Ray Gamble ◽  
Randy J. Nelson

Males are generally more susceptible to parasite infection than females. This sex difference may reflect the suppressive effects of testosterone and enhancing effects of estradiol on immune function. This study characterized the role of circulating steroid hormones in sex differences after infection with the nematode Trichinella spiralis. Because testosterone suppresses immune function and because polygynous males have higher circulating testosterone concentrations than monogamous males, sex differences in parasite burden were hypothesized to be exaggerated among polygynous meadow voles compared with monogamous prairie voles. As predicted, sex differences in response to T. spiralis infection were increased among meadow voles; males had higher worm numbers than females. Male and female prairie voles had equivalent parasite burden. Overall, prairie voles had higher worm numbers than meadow voles. Contrary to our initial prediction, differences in circulating estradiol concentrations in females, testosterone concentrations in males, and corticosterone concentrations in both sexes were not related to the observed variation in T. spiralisinfection. Taken together, these data suggest that not all sex differences in parasite infection are mediated by circulating steroid hormones and that adaptive-functional explanations may provide new insight into the causes of variation in parasite infection.


1997 ◽  
Vol 273 (2) ◽  
pp. R655-R660 ◽  
Author(s):  
S. L. Klein ◽  
R. J. Nelson

Males generally exhibit reduced immunocompetence and greater susceptibility to disease than females. The explanations for why males may be more susceptible to disease than females fall into two categories: 1) the proximate mechanisms mediating immunity, such as hormonal mechanisms, and 2) variation in reproductive success between the sexes. The present study examined the extent to which these factors contribute to sex differences in cell-mediated immune function in polygynous Peromyscus maniculatus and monogamous Peromyscus californicus. Prevailing hypotheses suggest that, because variation in male and female reproductive success is greater among polygynous than monogamous species, sex differences in immunocompetence should be greater among polygynous than monogamous species as well. In contrast to these predictions, sex differences in cell-mediated immunity and body mass were only observed among monogamous P. californicus, in which females exhibited higher splenocyte proliferation in response to the T cell mitogen, concanavalin A, and weighed less than male conspecifics. Male P. maniculatus had higher serum testosterone concentrations than male P. californicus, but females of the two species did not differ in circulating estradiol concentrations. Sex steroid concentrations were not correlated with either immunocompetence or body mass; however, large P. californicus males exhibited reduced immune responses. Taken together, these results do not support the hypothesis that sex differences in immunocompetence are more pronounced among polygynous compared with monogamous species. Furthermore, these data suggest that circulating testosterone does not mediate sex differences in immuno-competence or body mass in P. californicus.


2020 ◽  
Author(s):  
Joel A Tripp ◽  
Alejandro Berrio ◽  
Lisa A McGraw ◽  
Mikhail Matz ◽  
Jamie K Davis ◽  
...  

AbstractBackgroundPair bonding with a reproductive partner is rare among mammals but is an important feature of human social behavior. Decades of research on monogamous prairie voles (Microtus ochrogaster), along with comparative studies using the related non-bonding meadow vole (M. pennsylvanicus), have revealed many of the neural and molecular mechanisms necessary for pair-bond formation in that species. However, these studies have largely focused on just a few neuromodulatory systems. To test the hypothesis that neural gene expression differences underlie differential capacities to bond, we performed RNA-sequencing on tissue from three brain regions important for bonding and other social behaviors across bond-forming prairie voles and non-bonding meadow voles. We examined gene expression in the amygdala, hypothalamus, and combined ventral pallidum/nucleus accumbens in virgins and at three time points after mating to understand species differences in gene expression at baseline, in response to mating, and during bond formation.ResultsWe first identified species and brain region as the factors most strongly associated with gene expression in our samples. Next, we found gene categories related to cell structure, translation and metabolism that differed in expression across species in virgins, as well as categories associated with cell structure, synaptic and neuroendocrine signaling, and transcription and translation that varied among the focal regions in our study. Additionally, we identified genes that were differentially expressed across species after mating in each of our regions of interest. These include genes involved in regulating transcription, neuron structure, and synaptic plasticity. Finally, we identified modules of co-regulated genes that were strongly correlated with brain region in both species, and modules that were correlated with post-mating time points in prairie voles but not meadow voles.ConclusionsThese results reinforce the importance of pre-mating differences that confer the ability to form pair bonds in prairie voles but not promiscuous species such as meadow voles. Gene ontology analysis supports the hypothesis that pair-bond formation involves transcriptional regulation, and changes in neuronal structure. Together, our results expand knowledge of the genes involved in the pair bonding process and open new avenues of research in the molecular mechanisms of bond formation.


2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 1141-1141
Author(s):  
Yongbo She ◽  
Kun Wang ◽  
Ben Willing ◽  
Sue Tsai ◽  
Spencer Proctor ◽  
...  

Abstract Objectives Biomarkers of full-fat dairy consumption have been inversely associated with variables of insulin resistance (IR) and immune function. To understand the effect of consuming dairy fat per se on immune function in the context of IR, we used our established low birthweight (LBW) swine model of high fat diet induced IR to compare regular fat dairy products vs. low-fat dairy products and compared to a control high fat diet (CHF). We hypothesize that consuming a diet rich in dairy fat will improve immune function in the context of IR. Methods At 5 weeks of age, LBW piglets were randomized to consume one of the 3 experimental diets: 1) CHF, 2) HF supplemented with 3 servings high fat dairy (HFDairy) and 3) HF supplemented with 3 servings low fat dairy (LFDairy). As comparison groups, normal birthweight (NBW) piglets were fed a CHF or standard pig grower diet (Chow). A total of 35 pigs (LBW-CHF n = 8, LBW-HFDairy n = 8, LBW-LFDairy n = 8, NBW-CHF n = 6, NBW-Chow n = 5) were fed for 7 weeks. At 12 weeks of age, pigs were euthanized for tissue and blood collections. Mitogen stimulations on peripheral blood mononuclear cells were conducted to assess immune responses. Results Results show that there were no statistical differences in IL-2, IL-10 and TNF-α levels after pokeweed mitogen (PWM, T and antigen presenting cell mitogen) and phytohaemagglutinin (PHA, T cell mitogen) stimulations between all LBW groups. However, IL-10 levels after PHA stimulation were found to be higher in NBW-Chow compared to LBW-CHF, LBW-HFDairy and LBW-LFDairy (all P < 0.05). Similarly, IL-2 levels after PWM stimulation were found to be higher in NBW-Chow compared to LBW-CHF and LBW-HFDairy (both P < 0.05) groups but not LBW-LFDairy. Conclusions Current data suggest that consumption of dairy products, regardless of the fat content, as little effect on immune function in the context of IR. However, we demonstrated that diet-induced IR piglets exhibit altered immune responses to a T cells mitogen, compared to NBW piglets. Funding Sources Agriculture Funding Consortium, NSERC Discovery Program, Dairy Farmers of Canada-Nutrition Research Program.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Qiuting Fu ◽  
Qiankun Cui ◽  
Yi Yang ◽  
Xinghong Zhao ◽  
Xu Song ◽  
...  

Resveratrol, a polyphenolic plant antitoxin, has a wide range of pharmacological activities. In this study, we systematically evaluated the effects of resveratrol dry suspension (RDS) on immune function in piglets that were treated with different doses of RDS for 2 weeks. The results showed that the RDS has significant effects on the development, maturation, proliferation, and transformation of T lymphocytes. RDS could regulate humoral immune responses by upregulating the release of IFN-γ and downregulating the release of TNF-α. After piglets were vaccinated against classical swine fever virus and foot-and-mouth disease virus, the antibody titers were significantly increased. RDS treatment showed an excellent resistance to enhance T-SOD activity. Values of blood routine and blood biochemistry showed no toxicity. These results suggested that RDS could be considered as an adjuvant to enhance immune responses to vaccines, as well as dietary additives for animals to enhance humoral and cellular immunity.


Vaccines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 715
Author(s):  
Chunxiang Bai ◽  
Lijun Zhou ◽  
Junxia Tang ◽  
Juanjuan He ◽  
Jiangyuan Han ◽  
...  

Tuberculosis (TB), caused by Mycobacterium tuberculosis (M. tuberculosis), is among the most serious infectious diseases worldwide. Adjuvanted protein subunit vaccines have been demonstrated as a kind of promising novel vaccine. This study proposed to investigate whether cytokines interliukine-7 (IL-7) and interliukine-15 (IL-15) help TB subunit vaccines induce long-term cell-mediated immune responses, which are required for vaccination against TB. In this study, mice were immunized with the M. tuberculosis protein subunit vaccines combined with adnovirus-mediated cytokines IL-7, IL-15, IL-7-IL-15, and IL-7-Linker-IL-15 at 0, 2, and 4 weeks, respectively. Twenty weeks after the last immunization, the long-term immune responses, especially the central memory-like T cells (TCM like cell)-mediated immune responses, were determined with the methods of cultured IFN-γ-ELISPOT, expanded secondary immune responses, cell proliferation, and protective efficacy against Mycobacterium bovis Bacilli Calmette-Guerin (BCG) challenge, etc. The results showed that the group of vaccine + rAd-IL-7-Linker-IL-15 induced a stronger long-term antigen-specific TCM like cells-mediated immune responses and had higher protective efficacy against BCG challenge than the vaccine + rAd-vector control group, the vaccine + rAd-IL-7 and the vaccine + rAd-IL-15 groups. This study indicated that rAd-IL-7-Linker-IL-15 improved the TB subunit vaccine’s efficacy by augmenting TCM like cells and provided long-term protective efficacy against Mycobacteria.


Sign in / Sign up

Export Citation Format

Share Document